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Electron tunneling through a quantum dot embedded in a nanowire

was studied by the transfer matrix method. A smoothness of the interfaces

was taken into account using the analytical parametrization of the potential

profile. We calculated the current–voltage characteristics and discussed the

effect of the spacer, which separates the quantum dot from the contacts.

We found that the tunneling current peak possesses the asymmetric Fano

resonance shape in the absence of spacer. The results of calculations agree

with the experimental data.

PACS numbers: 73.63.Nm

1. Introduction

Semiconductor nanowires, as quasi-one-dimensional conductors, are very
promising candidates for constructing nanodevices of future electronics and quan-
tum computing. Recently, the nanowires with single [1] and multiple [2] quantum
dots (QDs) have been studied experimentally. These nanowire QDs can be used
to control the resonant electron tunneling in the semiconductor nanodevices. The
nanodevice made from the InP/InAs/InP double barrier heterostructure grown
within the InAs nanowhisker [1] can be applied as a resonant tunneling diode
(RTD). The current–voltage characteristics of the nanowire RTD exhibit a pro-
nounced current peak with an extremely large peak-to-valley ratio (50:1) and a
negative differential resistance [1].

In the present paper, we investigate the electron tunneling through the
nanowire with the single QD by the transfer matrix method. Instead of the com-
monly used rectangular approximation of the barrier potential, we approximate it
by a power-exponential potential [3], which takes into account a softness of po-
tential barriers. The necessity of using the soft potential barriers results from the
interface smoothness [4], i.e., the non-perfect sharpness of atomic planes observed
at the InAs/InP interface [1], and the tensile strain field, which acts near the
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interface due to the lattice mismatch [5]. The application of the potential with
the variable softness allows us to model the realistic profile of the confinement
potential in the nanowire QD.

2. Theory

In the heterostructure [1], the potential-barrier (well) regions are formed
from InP (InAs) embedded in the nanowire, which is fabricated from n-InAs.
This nanostructure forms the quasi-one-dimensional (1D) nanowire QD. The po-
tential profile in the nanowire QD (Fig. 1) can be modeled by the two-center
power-exponential function [3]:

U(z) = U0

{
e−[(z+z0)/R]p + e−[(z−z0)/R]p

}
, (1)

where coordinate z is measured along the nanowire axis and U0 is the height of
potential energy barrier. Parameter p determines a softness of the potential. For
p = 2 the potential is “soft” (in this case, we are dealing with two Gaussians
centered at ±z0) and for p ≥ 4 the potential can be treated as “hard” [in par-
ticular, for p −→ ∞ potential (1) goes over into the two rectangular potential
barriers]. Range R of potential (1) determines the thickness b of the barrier (for
the rectangular barrier b = 2R).

Fig. 1. Electron potential energy U as a function of coordinate z measured along the

nanowire axis for p = 2 and p = 100 and for bias voltage V = 0 and 100 mV. Parameters

b and w determine the thicknesses of potential barrier and well, respectively, U0 is the

height of the potential barrier.

Bias voltage V applied between the ohmic contacts attached to the nanowire
modifies the potential shape (cf. Fig. 1), which leads to a flow of current. At low
temperature, the current is mainly due to the quantum tunneling of electrons
through the double-barrier region. In the 1D model of the nanostructure, the
zero-temperature current can be expressed as follows:
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I =
2e

h

eV +EF∫

eV

dE T (E, V ) , (2)

where EF is the Fermi energy of conduction band of the degenerate n-InAs and
T (E, V ) is the transmission coefficient. Throughout the present paper, we put
the electrostatic potential and the energy of the conduction-band minimum of
the right side of the nanodevice equal to zero. In the voltage regime near the
transmission maximum, the electron transport from the right contact to the left
contact is negligibly small.

3. Results and discussion

We have calculated the transmission coefficient as a function of energy E of
incident electrons and bias voltage V by the transfer matrix method. In order to
apply this method, the potential energy (Fig. 1) has been approximated by the
piecewise constant function, for which the transfer matrix method is straightfor-
ward. We have studied the effect of spacer between the left (right) contact and the
left (right) barrier. In the present calculations, we put thickness s of the spacer
to be either zero or maximal, i.e., s = smax = (L − 2b − w)/2, where L is the
length of the nanowire. Due to the small thickness of InP barriers, we assume that
the electron has the conduction band mass of InAs, i.e., me = 0.0265me0, where
me0 is the free electron rest mass. We have taken into account the smearing of
each InP/InAs interface by 2 lattice spacings [1], which leads to R = 2.0625 nm.
Moreover, we fix other nanodevice parameters at their nominal values [1], i.e.,
U0 = 600 meV and w = 15 nm.

Fig. 2. Transmission coefficient T as a function of incident electron energy E for soft-

ness parameter p = 8 and spacer width (a) s = 987.5 nm, and (b) s = 0. Each series of

peaks results from the tunneling via the quasi-bound states with energies E0 and E1.

In each series, the first left peak is plotted for bias voltage V = 0 and the next peaks

are plotted for V = 20, 40, 60, and 80 mV.
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Fig. 3. Ground-state (E0) and excited-state (E1) energy levels as functions of bias

voltage V and softness parameter p.

Fig. 4. Current–voltage characteristics as functions of softness parameters p and spacer

thickness s for EF = 2.5 meV and I0 = 7.748 pA.

The transmission coefficient calculated as a function of incident-electron en-
ergy E and bias voltage V is plotted in Fig. 2a (for s = smax) and Fig. 2b (for
s = 0). The sharp transmission peaks result from a resonant tunneling of electrons
through the quasi-bound states in the QD. The energy positions of these peaks
very well agree with energy levels En of the quasi-bound states calculated by the
imaginary time-step method. Figure 3 depicts the ground-state (E0) and first-
-excited state (E1) energy levels as functions of bias voltage V . The transmis-
sion peaks (Fig. 2) shift toward higher energies if the bias voltage increases. This
shift results from the corresponding increase in energy levels En (cf. Fig. 3). The
current–voltage characteristics calculated with the help of Eq. (2) are displayed
in Fig. 4. Each current–voltage characteristic exhibits a pronounced peak if the
ground-state energy E0 belongs to the transmission window, i.e., the energy in-
terval [eV, eV + EF]. Changing the bias voltage we change the condition of the
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resonance tunneling. The position of the current peak shifts toward the higher
voltage if the potential barrier becomes more soft, which corresponds to the simi-
lar shift of energy E0 as a function of softness parameter p (cf. Fig. 3).

Figure 4 shows that the current peaks are either symmetric (for s = smax) or
asymmetric (for s = 0). This change of shape of the current–voltage characteristics
results from the difference between the transmission peaks (cf. Fig. 2). In the
case of s = smax, the transmission maxima are close to 1 in the resonance regime,
i.e., for V ≤ 80 mV (Fig. 2a). This leads to the symmetric shape of current peaks,
which were observed in the experiment [1]. However, for s = 0 the transmission
maxima rapidly fall down to zero with the increasing voltage (Fig. 2b). In this
case, the transmission energy window quickly crosses the energy level E0 when
the voltage V increases. Therefore, the tunneling current is considerably smaller
than in case of non-zero spacer and the current peak acquires the asymmetric Fano
shape [6].

Figure 5 shows the comparison of the calculated and measured current–
voltage characteristics for the InAs/InP nanowire QD. The best agreement with
the experimental data [1] has been found for p = 6.5 and EF = 3.5 meV (with
all other nanodevice parameters fixed at their nominal values). The present cal-
culations reproduce the position and half width of the current peak, but not the
maximum current value and the increase in the current observed in the regime
V > 100 mV. In this voltage regime, we are dealing with the phonon-assisted
tunneling and thermoionic current, which were neglected in the present approach.

Fig. 5. Calculated (black curve) and measured (gray curve) current–voltage character-

istics. The adjusted parameters are p = 6.5 and EF = 3.5 meV.

In summary, we have studied the tunneling current via the QD embedded
in the nanowire. Taking into account the realistic profile of the confinement po-
tential in the framework of the 1D model, we have calculated the current–voltage
characteristics of the nanodevice. We have found that the tunneling current peak
has the asymmetric Fano shape if there is no spacer between the contacts and the
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double-barrier region, i.e., there is a strong coupling between the continuum states
of electrons in contacts and the localized electron state in the QD. The present
model leads to a good agreement between the calculated and measured tunneling
current peaks in the nanowire QD.
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