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Technical University of Lisbon, av. Rovisco Pais, 1049-001 Lisbon, Portugal
cEuropean Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France

dDepartment of Physics, Adam Mickiewicz University
Umultowska 85, 61-614 Poznań, Poland
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We discuss some aspects of the problem of spin currents in magnetic

nanostructures. One of them is related to the proper definition of the spin

current and is generic for any electronic or magnetic system. Using the

standard method related to the symmetry with respect to local spin trans-

formations, we analyze the generation of equilibrium spin currents in inho-

mogeneous magnetic structures. As an example we consider the generation

of persistent spin current in a mesoscopic ring.
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1. Introduction

In the past several years considerable efforts have been directed to under-
standing the peculiarities of spin transport phenomena in magnetic nanostructures.
It turned out that the physics of spin-dependent phenomena is surprisingly rich of
new effects, which can have potential device applications. The key point of many
problems is the spin current: its generation and manipulation by using magnetic
fields, bias and gate voltages, light illumination, and so on. Some basic ideas in
this field has been suggested by Slonczewski [1] and Berger [2], which resulted in
a flow of theoretical and experimental works.

The investigation of spin-dependent transport phenomena in metals or semi-
conductors requires understanding of peculiarities of the spin-density or spin-
-current response to an external perturbation. The standard Kubo formalism in
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the frame of a spin-independent response theory is reproduced in many textbooks
(see, for example, Refs. [3, 4]). The corresponding generalization to the case of a
spin-dependent perturbation in terms of spin currents [5, 6] is very nontrivial and
still needs further studying [7].

First, the definition of the spin current has been often made only on an intu-
itive physical ground. On the other hand, it is well known that the charge current
is related to the local phase (gauge) transformations and to the conservation of
electric charge [8]. For the spin currents, the underlying symmetry is the group of
SU(2) transformations in spin space [6] but this symmetry can be explicitly broken
by any spin-depending interactions. Thus, there is a question about using the def-
inition of spin current and its possible non-conservation, i.e., about the existence
of continuity equation for spin in the case of scattering from magnetic impurities
or spin–orbit interactions, and in the case of spin transport in inhomogeneous
magnetic structures. The other question is related to existence of equilibrium spin
currents, which do not break time invariance, and are dissipationless.

Recently, several spin-dependent transport effects have attracted much at-
tention, among them the anomalous Hall effect [9, 10] and the spin Hall effect
[11–13]. In the first case, the charge Hall current is induced by the electric current
flowing in a perpendicular direction, in the absence of external magnetic field.
In the second case, the spin Hall current is induced by the perpendicular charge
current. Also, the corresponding inverse effects can be possible, like generation of
the electric voltage by spin-polarized current [14]. All these phenomena have to
be described using a unified formalism, in which the charge and/or spin current
are induced by electric or spin perturbations. It should be emphasized that not
only the off-diagonal (Hall) components of a tensor determining the response (like
σxy) are of current interest, but also the diagonal components, connected with the
spin conductivity. The corresponding transport effects, described by the diagonal
or off-diagonal responses, are related to the charge-to-spin current transformation,
which is the key problem of modern spintronics [15].

In this work we also discuss a problem of the spin transport in inhomoge-
neous magnetic systems related to non-conservation of the spin current and to
existence of nondissipative equlibrium spin currents. This problem can be ana-
lyzed using some simplified models, which can be realized, for example, in form of
magnetic nanorings. The equilibrium spin currents are responsible for the mag-
netic interactions, and can be identified via the electric polarization appearing in
the vicinity of the spin flows.

2. Spin current in the electronic system
We start from the standard field theory approach [8] to define the spin cur-

rent. Our formalism is equivalent to that of Refs. [5, 6]. Let us consider first a
nonrelativistic electron gas in the absence of internal magnetization or any spin-
-dependent interactions. The corresponding Lagrangian has the following form
(we put ~ = 1):
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L =
∫

d3r ψ†(r, t)
(

i
∂

∂t
+
∇2

2m
− V (r)

)
ψ(r, t), (1)

where ψ(r, t) is the two-component spinor field, and V (r) is the random potential
related to impurities. This Lagrangian is invariant under global spin transforma-
tions. Instead, one can perform local spin transformation

ψ(r, t) → exp [−ig n(r, t) · σ] ψ(r, t), (2)
where n (r, t) is a unit vector and g is a coupling constant. The Lagrangian, in-
variant under such local transformations, is

L =
∫

d3r ψ†(r, t)

[
i
(

∂

∂t
− iAi

0(r, t) σi

)
+

1
2m

(
∂

∂rα
− iAi

α(r, t)σi

)2

−V (r)] ψ(r, t), (3)
and it includes gauge fields Ai

0(r, t) and Ai
α(r, t). The gauge fields related to

transformation (2), are determined by

Ai
0(r, t) = g

∂ni(r, t)
∂t

, Ai
α(r, t) = g

∂ni(r, t)
∂rα

. (4)

We define the spin density Si(r, t) and the spin-current density J i
α(r, t) operators

as the functional derivatives of the Lagrangian

Si(r, t) =
δL

δAi
0(r, t)

, (5)

J i
α(r, t) =

δL

δAi
α(r, t)

. (6)

Then using Eqs. (3) to (6), we find

Si(r, t) = ψ†(r, t) σi ψ(r, t), (7)

J i
α(r, t) =

1
2m

ψ†(r, t)
[
σi

(
−i

∂

∂rα
−Aj

α(r, t)σj

)

+
(
−i

∂

∂rα
−Aj

α(r, t) σj

)
σi

]
ψ (r, t) . (8)

Let us note that both spin density and spin current density are local in time and
space, and both include the gauge potential, which does not vanish in the inhomo-
geneous magnetic system. The invariance of Lagrangian (3) with respect to small
rotations n → n + δn(r, t) leads to the spin conservation

∂Si(r, t)
∂t

+ div J i(r, t) = 0. (9)

However, any additional spin-dependent terms in the Hamiltonian, like an ex-
change field or the spin–orbit (SO) interaction, would destroy the invariance with
respect to the spin transformations (2), leading to non-conservation of the spin
density. Hence, Eq. (9) holds in the absence of the spin-dependent interactions.
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If we include SO interaction, it breaks the symmetry, and the spin current is
not conserved. However, if the SO interaction is relatively small, we can take it into
account as a weak spin relaxation, which can be formally included into right part of
Eq. (9) in form of a relaxation term −δSi(r, t)/τso. It should be emphasized that
the requirement of weak spin relaxation is related to the definition of spin current
as conserved quantity, and it gives us a choice with two different possibilities.
Either we can try to redefine the spin current (in this case it should be called
different) [16], so that the new definition would lead us to a new conservation law,
or we still accept standard definition of spin current (5), (6) keeping in mind its
non-conservation in spin-relaxation processes or in transfer of torque.

Our consideration of spin currents in the electronic system can be easily
generalized to the system described by the Hamiltonian of magnetic interactions.
In the following we demonstrate that it leads to appearance of equilibrium spin
currents in noncollinear magnetic structures.

3. Spin current in a ferromagnet with inhomogeneous magnetization

Let us consider the continuous model of a ferromagnet described by Hamil-
tonian, which includes the exchange interaction, anisotropy, and the interaction
with external magnetic field B(r):

H =
∫

d3r

[
a

2

(
∂nµ

∂ri

)2

+ F {n(r)} − β Bµnµ

]
, (10)

where n(r) is the unit vector oriented along the magnetization at the point r, a

is the constant of exchange interaction, F {n(r)} is a function determining the
anisotropy (correspondingly, it includes a certain number of tensors relating the
components of vector n), β = gLµBM0, gL is the Landé factor, µB is the Bohr mag-
neton, and M0 is the magnitude of magnetization. Due to the condition n2(r) = 1,
this model is constrained and belongs to the class of nonlinear σ models [17].

The stationary (saddle point) solutions for the magnetization n(r) describing
metastable states of the ferromagnet, can be found by minimizing Hamiltonian (10)
with the constraint n2(r) = 1. It was shown (see, e.g., Refs. [17, 18]) that such
metastable states with inhomogeneous magnetization are related to the topology
of ferromagnetic ordering, and they can include hedgehogs, skyrmions, magnetic
vortices and other topological objects.

In the magnetic system described by Hamiltonian (10) we can use the same
definition of spin current as related to the rotation of vector n in the spin space [19].
In this case, the corresponding transformations are rotations of magnetization
vectors belonging to the group SO(3). Following the idea, we perform a local
rotation n(r) → R(r)n(r) using the orthogonal transformation matrix R(r). By
definition, it determines the rotation of local frame in each point of the coordinate
space. The general form of transformation is

R(r) = eiψ(r)Jz

eiθ(r)Jy

eiφ(r)Jz

, (11)
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where ψ, θ, φ are the Euler angles determining arbitrary rotations of the coor-
dinate frame, and Jx, Jy, and Jz are the generators of 3D rotations around x, y

and z axes, respectively.
The Hamiltonian of exchange interaction (the first term in Eq. (10)) in the

rotated frame acquires the following form:

Hex =
a

2

∫
d3r

(
∂nµ

∂ri
−Ai µν nν

)2

, (12)

where the gauge field Ai(r) is defined by

Ai(r) =
(

∂

∂ri
R(r)

)
R−1(r). (13)

Transformation (11) and the vector components of gauge potential Ai(r) are 3×3
matrices acting in the spin space. The matrix Ai(r) can be presented as

Ai(r) = iJµAµ
i (r), (14)

where Aµ
i (r) belong to the adjoint representation of the group SO(3).

After transformation to the local frame, the anisotropy described by the
second term in the right hand side of (10) results in a function F̃ {n(r)} with
correspondingly transformed tensor fields. We do not restrict the consideration
by any specific form of the anisotropy. The last term in Eq. (10) describing the
coupling to external field, has the same form after the transformation, with the
vector components in the rotated frame.

The exchange energy term in the Hamiltonian, containing the gauge field
associated with the spin rotations, can be written as

Hex =
a

2

∫
d3r

[(
∂

∂ri
δαβ − iAµ

0i Jαβ
µ

)
nβ

]2

. (15)

Here Aµ
0i is labelled with index 0 to distinguish it from previously considered field

Aµ
i , which was related to the varying in space orientation of the local frame. The

field A0i transforms under spin rotations as A0i → eiΩ·J (A0i + ∂Ω/∂ri), where
Ω(r) is the angle of spin rotation.

The spin current in the magnetic system is

jµ
i = γ

δH

δAµ
0i

, (16)

and we find

jµ
i = −icsJ

αβ
µ nβ

(
∂

∂ri
δαγ − iAδ

0i Jαγ
δ

)
nγ , (17)

where cs = γaM0, amd γ is the gyromagnetic ratio. The spin current (17) is
gauge invariant. We can fix the gauge by taking Aµ

0i = 0 since we introduced
the potential Aµ

0i as an auxiliary field to define the spin current. Then, using the
relation iJνλ

µ = εµνλ, where εµνλ is the unit antisymmetric tensor, we obtain
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jµ
i = cs εµνλ nν

∂nλ

∂ri
. (18)

As follows from Eq. (18), the spin current is nonzero in noncollinear ferromagnets.
In particular, it is nonzero in a metastable state of the ferromagnet with topological
excitations [18].

Now we calculate the spin current in a thin mesoscopic ring. It is the case
when, due to the magnetic anisotropy, the magnetization is noncollinear, and it
usually forms a magnetization vortex. For the ring geometry, we use cylindric
coordinates (ρ, ϕ, z) of the point on the ring, and assume that the vector n does
not depend on ρ and z. Then the Hamiltonian Hex can be written as

Hex =
a ζ0

2R

∫ 2π

0

dϕ

(
∂nµ

∂ϕ
+

1
2π

εµλν Φλ nν

)2

, (19)

where R and ζ0 are the radius and cross-section of the ring, respectively, Φλ
0 ≡

LAλ
0ϕ, and L = 2πR. We take Aµ

0ϕ constant along the ring. Then Φµ
0 is the flux of

the µ-component of fictitious gauge field Aµ
′ϕ through the ring. The spin current

in the ring is

jµ
ϕ = cs

δH

δΦµ
0

. (20)

Using Hamiltonian (10) and taking the auxiliary field Φµ
0 = 0 we find the compo-

nents of spin current flowing along the ring

jρ
ϕ =

cs ζ0

L

∫
dϕ

[
−nz

(
nρ +

∂nϕ

∂ϕ

)
+ nϕ

∂nz

∂ϕ

]
, (21)

jϕ
ϕ =

cs ζ0

L

∫
dϕ

[
nz

(
−nϕ +

∂nρ

∂ϕ

)
− nρ

∂nz

∂ϕ

]
, (22)

jz
ϕ =

cs ζ0

L

∫
dϕ

[
nϕ

(
nϕ − ∂nρ

∂ϕ

)
+ nρ

(
nρ +

∂nϕ

∂ϕ

)]
. (23)

Now we can use the following expansion in harmonics:

nµ(ϕ) =
1√
2π

∑

l

eilϕnµ(l) , l = 0,±1, . . .

and, finally, we obtain for the components of spin current

jρ
ϕ = −cs ζ0

L

∑

l

[nz(−l) nρ(l) + il nz(−l)nϕ(l)] , (24)

jϕ
ϕ = −cs ζ0

L

∑

l

[(1− il)nz(−l)nϕ(l)− il nρ(−l) nz(l)] , (25)

jz
ϕ =

cs ζ0

L

∑

l

[nϕ(−l) nϕ(l) + nρ(−l) nρ(l)− 2il nϕ(−l)nρ(l)] . (26)

In two particular cases when (i) nρ = 1, nϕ = nz = 0 (radial orientation of mag-
netization at the ring), and (ii) nϕ = 1, nρ = nz = 0 (tangent orientation of



Spin Currents in Magnetic Nanostructures 981

magnetization), we obtain using Eqs. (24) to (26)

jz
ϕ =

2πcs ζ0

L
, jρ

ϕ = jϕ
ϕ = 0. (27)

It means that there exists a persistent spin current in the ring transferring the
z-component of magnetization.

It should be emphasized that the spin current (27) is related to the
metastable state of magnetization field but not related to spin wave excita-
tions [20]. The contribution of magnons still exists but in this case this con-
tribution is negligibly small because the magnons are weak excitations over the
metastable state. Besides, the contribution of magnons is completely vanishing in
the limit of T → 0.

It is known that the persistent spin current in the ring induces a static electric
polarization [21, 20], which is associated with the inverse spin Hall effect [14, 22].
Due to this effect the spin current can be observable by measurements of the static
electric field near the ring with the persisting current. The electric polarization
P is related to the spin current by Pi ' εijµ jµ

j /c2, which allows to estimate the
magnitude of induced electric field.

4. Conclusions

Using a general approach to the spin current problem we calculated the
equilibrium spin current in a mesoscopic ring. This current is related to the inho-
mogeneous magnetization, which cannot be avoided by any transformations of the
ring geometry because of topology of the magnetic excitation in the ring (magnetic
vortex). The physical meaning of nondissipative spin current is the transmission
of an angular momentum acting locally on the magnetic moment in each point of
the ring, which is quite similar to the spin torque mechanism of magnetic moment
reversion in the magnetic multilayers.
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