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Metal–Dielectric Transition in Hydrogen
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The electrical resistivity of liquid metallic hydrogen at a temperature of

3000 K and a density of 0.35 mol/cm3 is calculated. Hydrogen is considered

as a three-component system consisting of electrons, protons, and neutral

hydrogen atoms. The second order of perturbation theory in electron–proton

and electron–atom interactions is used to determine the inverse relaxation

time for electric conductivity. The Coulomb electron–electron interaction

is taken into account in the random phase approximation and the exchange

interaction and correlation of conductivity electrons are included in the local-

-field approximation. The model of hard spheres is used for the proton and

atomic subsystems. The concentration of the electrically neutral atomic

component proved to be significantly lower than the value assumed by the

discoverers of metallic hydrogen.

PACS numbers: 72.10.−d, 72.15.−v, 72.15.Cz, 72.15.Lh

1. Introduction

The existence of hydrogen in the metallic state was theoretically predicted in
1935 [1]. A number of studies devoted to the theoretical description of its proper-
ties were published in the subsequent years (see, e.g., [2, 3]). A qualitative break-
through in the studies of metallic hydrogen occurred after a number of experiments
on shock compression of both molecular hydrogen in the liquid state and hydro-
gen and deuterium plasma. Those experiments showed that electric conductivity
increased steeply for certain combinations of density, pressure, and temperature
[4–9]. Specific values of these parameters depended on the initial state of hydrogen
(i.e., the state before compression). The values quoted by different experimentalist
teams also somewhat differed. To make the quantitative calculations performed
in this study more certain, we use the values of these parameters obtained, e.g.,
in [4]. However, since the experimental studies of [5] are fairly comprehensive, we
use some experimental results of this study for interpreting the theoretical results
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that we obtained. According to [4], molecular hydrogen in the liquid state was
subjected to shock compression up to the pressures in the range 0.93–1.80 Mbar at
the temperatures 2200–4400 K and densities 0.28–0.36 mol/cm3. If pressure was
increased to 1.4 Mbar, temperature to 3000 K, and density to 0.32 mol/cm3, the
width of the band gap reduced to the specimen temperature (3000 K). This point
was considered by the authors of [4] as the point of the transition of molecular
hydrogen into the metallic state, although hydrogen in this state is still a semi-
conductor. If the hydrogen density was increased further, the band gap vanished
rapidly [4] and its presence could be neglected at a density of 0.35 mol/cm3. The
electrical resistivity for the hydrogen transition to the metallic state amounted to
the values 500 µΩ cm in [4] and < 1000 µΩ cm in [6] that are specific to heated
metals.

According to the results of many experiments and primarily those discussed
above, the existence of hydrogen in solid state may be considered to be a reliably
established experimental phenomenon. This possibility is theoretically confirmed
by quantum-mechanical calculations made by the Monte Carlo method [10]. After
the impressive breakthrough in the experimental studies of hydrogen in the metallic
state, theoretical studies of its various properties in broad ranges of densities and
pressures [11, 12] become increasingly important. This refers, in particular, to
the conditions that are specific to the cores of giant planets in the solar system,
namely, Jupiter, Saturn, Uranus, and Neptune. The theoretical studies may be
strongly encouraged by the fact that the methods for shock compression of the
matter that are used in laboratory conditions allow experimentalists to obtain
virtually any pressures up to a gigabar range [12].

The aim of this study is to analyze the possibility of using the model of
almost free electrons for describing the electrical resistivity of metallic hydrogen
in quantitative terms and determining the metallization degree of hydrogen in
the metal–dielectric transition. It should be noted that the degree of hydrogen
metallization is also of importance for analyzing the equilibrium properties of
metallic hydrogen [13].

The currently existing methods for calculating electrical resistivity, which
use both the Ziman formula [3, 14] and computer simulation [15], are based on
the assumption that metallic hydrogen is a two-component system that consists
of only protons and electrons. In both cases, the values of the electrical resistivity
proved to be approximately 20 µΩ cm.

The inclusion of higher-order terms of perturbation theory in electron–ion
interaction is important in considering the electronic transport phenomena in dis-
ordered metals. These terms are fairly significant in the entire range where the
metallic phase exists and are quite well studied in simple liquid metals [16–25].
Studies of these terms also began for metallic hydrogen in broad ranges of tempera-
tures and densities [26]. If the higher-order terms of perturbation theory are taken
into account, the electrical resistivity of metallic hydrogen calculated under the
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assumption that hydrogen atoms are fully ionized at a density of 0.35 mol/cm3 and
a temperature of 3000 K, which correspond to the conditions of the experiments
in which metallic hydrogen was produced, proves to be approximately 50 µΩ cm.
However, this electrical resistivity is still an order of magnitude smaller than its
experimental value. The authors of [4] were the first to notice this discrepancy
between the experimental and theoretical values of electrical resistivity. They as-
sumed that the presence of neutral hydrogen atoms or molecules was the main
factor that explained the observed discrepancy. In their opinion, the fraction of
protons, i.e., ionized hydrogen atoms, should be about 5% of the mass of the
system. However, the electrical resistivity of metallic hydrogen as a complex mul-
ticomponent system has not been calculated theoretically. An aim of this study is
to fill this gap.

2. Metal–dielectric transition

For simple disordered metals with relatively high conductivity, the electrical
resistivity R is determined in the relaxation time approximation as follows:

R =
m

e2n

1
τ

, (1)

where n is the density of electron gas, T is the relaxation time for the electric
conduction process, e is the elementary charge, and m is the electron mass.

In the second order of perturbation theory in electron–ion interaction, the
following expression may be derived in the high-temperature limit for the inverse
relaxation time (the Ziman formula) [14, 16–26]:

τ−1 =
m

12π3h3

∫ 2kF

0

W 2(q)S(q)q3dq. (2)

Here, S(q) is a pair static structure factor of the ion subsystem and W (q) is the
screened potential of electron–ion interaction. For metallic hydrogen, the potential
of electron–proton interaction is Wp(q) = −V (q)/e(q), where V (q) = 4ne2/q2 is
the Fourier transform of the potential of the Coulomb proton–proton or electron–
proton interaction, ε(q) = 1+[V (q)+V (q)]π0q is the effective relative permittivity
of the electron gas in the random phase approximation, V (q) = −2πe2

q2+λk2
F

is the

potential of exchange interaction and electron–gas correlations λ ≈ 2 [27], kF is
the Fermi wave vector, and π0(q) is the polarization function of the free electron
gas.

Metallic hydrogen is the only system for which the unscreened potential of
the electron–proton interaction is accurately known. However, the electron–atom
interaction is very complex [28]. It should be noted that, for the interparticle dis-
tances specific to metals, electrostatic interaction is the only significant component
of this interaction and we take into account only this component.

We assume that, when metallic hydrogen is produced, the molecular phase
of liquid hydrogen transforms into the atomic phase [9] and only some atoms are
later ionized.
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The transition to the electrical resistivity of a binary alloy or solution of a
metal in a nonconducting liquid may be formally performed with the following
substitution [29]:

W 2(q)S(q) → c1c2[W1(q)−W2(q)]2 +
2∑

i,j=1

cicjWi(q)Wj(q)Sij(q). (3)

Here c1 = ca and c2 = cp are the concentrations of hydrogen atoms
and protons, respectively; S11(q) = Sa(q) is the structure factor of the atomic
subsystem; S22(q) = Sp(q) is the structure factor of the proton subsystem;
S12(q) = S21(q) = Sap(q) are the mixed structure factors of atoms and protons;
W1(q) = Wa(q); W2(q) = Wp(q); and Wa(q) = −U(q)

ε(q) is the screened potential of

electron–atom interaction, where U(q) = 4πe2

q2

[
1− 16

(4+q2)2

]
is the Fourier trans-

form of the electrostatic interactions between the electron and hydrogen atom [30].
We determine the diameter of hard spheres (or the minimal distance to which

protons may approach at a given temperature) from the condition that the kinetic
and potential energies of protons are equal when the distance between them is
minimal [26, 31]. The diameter of the hard spheres found in this way is a function
of the density and temperature. As a result, all the quantities that depend on the
diameter of the hard spheres also depend on the density and temperature.

Subsequent calculations may be significantly simplified without loss of accu-
racy if the Bohr radius is taken as the radius of the hard sphere that corresponds
to the hydrogen atom. Indeed, the temperature and density dependence of the
diameter of the hard spheres that correspond to atoms is determined by only
the screening effect of the electron subsystem. This effect is fairly small for the
short-range atomic potential.

The density and temperature of the system are natural external parameters.
The presence of internal parameters in the system is related to the model character
of calculations. Since the form factor of electron–proton interaction is accurately
known, the adopted approximation for the form factor of electron–atom interaction
does not contain fitting parameters, and since the electron subsystem is described
in the random phase approximation, only the proton and atomic subsystems may
be sources of the internal parameters of the system. If the exact solution of the
Percus–Yevick equation for the model of hard spheres is used for the partial pair
structure factors of the proton and atomic subsystems, the parameters associated
with these subsystems actually appear in the theory (diameters of hard spheres
σa and σp and the parameters of packing density ηa and ηp, which are interrelated
by simple formulae). One can easily check that only one of these parameters is
actually independent. It is convenient to adopt the diameter of the hard spheres
that correspond to protons as this independent parameter. If the temperature
of the system is also known, the remaining parameter of the system may also be
determined as it was described above.
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3. Results and discussion
Figure 1 shows the electrical resistivity of metallic hydrogen in the second

order of perturbation theory in the potential of electron–proton and electron–
atom interactions as a function of the concentration of protons (electrons) or
hydrogen atoms. The density and temperature of this three-component system
correspond to the conditions of the experiments in which metallic hydrogen was
produced [4]. The proton concentration varies from the value that is close to the
possible maximum, for which electrical resistivity is approximately 20 µΩ cm, and
to the minimum when electrical resistivity attains the measured value 500 µΩ cm
[4]. This minimal concentration of protons is of interest for us. According to our
calculations, this minimum is 10%. For comparison, the same figure shows the
density dependence of the electrical resistivity of metallic hydrogen determined
under the assumption that all the electrons in metallic hydrogen are collectivized.
It is natural then to use the Ziman formula for the electrical resistivity of pure
metals in which the presence of neutral hydrogen atoms is neglected. In this case,
the experimental value of the electrical resistivity is reproduced for the density of
protons that makes 7% of the specimen density. This value almost coincides with
the estimate (5%) presented in [4]. This estimate seems also to be based on the
analysis of the Ziman formula. One more conclusion is that the role of electron
scattering from neutral atoms is fairly significant as compared to their scattering
from protons.

Fig. 1. Electrical resistivity of metallic hydrogen at T = 3000 K vs. the density of the

proton subsystem.

An apparent specific feature of the contribution from scattering on hydrogen
atoms is that it tends to zero not only when the concentration of hydrogen atoms
approaches zero, but also when this concentration becomes maximally high. The
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latter phenomenon is attributed to the concurrent decrease in the density of con-
duction electrons so that the behavior of the electron–atom and electron–proton
form factors for only small values of the wave vector becomes significant in integral
(2). The screened form factor of electron–proton interaction tends to its maximum
possible value and the form factor of electron–atom interaction tends to zero.

In our opinion, both estimates of the fraction of hydrogen atoms should be
refined because, according to the Ioffe–Regel criterion [32], the model of almost
free electrons fails if the mean free path of the conduction electrons approaches the
distance between protons and the resistivity of the system approaches 200 µΩ cm.
One can determine the behavior of each specific metallic system where the Ioffe–
Regel criterion holds only provided that higher orders of perturbation theory in
electron–proton interaction are taken into account [16–26]. Since we only aim
at estimating the order of magnitude of the effect, the electron scattering from
neutral hydrogen atoms is neglected.

Fig. 2. Density dependence of the electrical resistivity of metallic hydrogen at T =

3000 K calculated with the inclusion of higher-order terms of perturbation theory.

Figure 2 shows the contributions from the second (R2) and the third (R3) or-
ders in electron–proton interaction to the electrical resistivity of metallic hydrogen
as a function of the density of the proton subsystem calculated according to [26].
One can see that the third-order contribution is comparable to the second-order
contribution for all the studied densities. It is especially large at relatively low
densities. This figure also shows the result of the approximate summation of the
perturbation-theory series R = R2

1−R3/R2
. It is seen that the series converges even

for a resistivity of 500 µΩ cm. If the density of the system decreases further, the
theoretical value of the resistivity obtained in the model of almost free electrons
tends to infinity.
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The plot shown in Fig. 2 may be used for determining the fraction of protons
and neutral atoms under the conditions of the experiment in which hydrogen in the
metallic state is obtained. One can see that the inclusion of the higher-order terms
of perturbation theory shifts the lower estimate for the density of protons from
5–10% to 30–35%. If the additional scattering of conduction electrons from hydro-
gen atoms is taken into account in the higher orders of perturbation theory, the
electrical resistivity attains the experimental value at even higher densities of the
proton subsystem. This theoretical conclusion agrees well with the experimental
results of [5], where the fraction of ionized atoms was ≤ 40%.

Thus, (i) the model of almost free electrons provides not only a qualitative
but also a quantitative description of the electrical resistivity of metallic hydrogen;
(ii) metallic hydrogen at a temperature of 3000 K and a density of 0.35 mol/cm3

contains, most probably, no less than three components. The fraction of the
proton subsystem in the total density of the metal is no less than 30–35% rather
than 5% as was concluded by the authors of [4]. This value fully agrees with the
experimental results reported in [5].
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