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The analytic mean field potential approach is applied to α-, β-, and

γ-Si3N4. The analytic expressions for the Helmholtz free energy, internal

energy, and equation of state were derived. The formalism for the case of

the Morse potential is used in this work. Its six potential parameters are

determined through fitting the compression experimental data of α-, β-,

and γ-Si3N4. The calculated compression curves of α-, β-, and γ-Si3N4

are in good agreement with the available experimental data. This suggests

that the analytic mean field potential approach is a very useful approach

to study the thermodynamic properties of Si3N4. Furthermore, we predict

the variation of the free energy and internal energy with the molar volume

at several higher temperatures and calculate the temperature dependence of

the molar volume, bulk modulus, thermal expansion coefficient and isochoric

heat capacity at zero pressure.

PACS numbers: 64.10.+h, 65.40.−b, 61.66.Fn

1. Introduction

Silicon nitride (Si3N4) is currently one of the most important technical ma-
terials owing to its unique mechanical and electronic properties. It is well known
that there are two stable polymorphs of silicon nitride, α- and β-Si3N4, where the
β configuration is the more stable of the two [1]. Both have a hexagonal lattice and
only differ along the z axis in the stacking sequence. It is generally believed that
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α- and β-Si3N4 are low- and high-temperature polymorphs, respectively, with a
transformation of α to β phase occurring at elevated temperatures above 1300◦C.
In 1999, a third polymorph of silicon nitride (γ-Si3N4) synthesized by Zerr et al.
[2] under high-pressure and high-temperature conditions. It has a hardness com-
parable to the hardest known oxide (stishovite, a high-pressure phase of SiO2)
[2–6] and significantly greater than the hardness of α- and β-Si3N4 [7]. In recent
years, many experiments on the properties of Si3N4 have been performed, and
their theories have been studied [8–18]. Among all the properties of Si3N4 studied
so far, the thermodynamic properties have been an intriguing subject. For exam-
ple, Kruger et al. have measured the isothermal equation of state of α-Si3N4 by
means of high-pressure X-ray diffraction, determining the bulk modulus and the
linear incompressibilities [8]. Jiang et al. have reported the compressibility and
thermal-expansion behavior of γ-Si3N4 by in situ X-ray powder-diffraction mea-
surements using synchrotron radiation, complemented with computer simulations
by means of first-principles calculations [9]. Paszkowicz et al. have determined the
lattice parameter and thermal expansion coefficient of γ-Si3N4 under high-pressure
and high-temperature conditions by X-ray diffraction [10]. Although there exist
many reports on the thermodynamic properties of Si3N4, most of them are the
experimental works.

However, we believe that the theoretical study on the thermodynamic prop-
erties of α-, β-, and γ-Si3N4 is very important for applications. Several years ago,
Wang et al. [19–22] proposed the analytic mean field potential (AMFP) approach,
and applied it to many materials. Bhatt et al. [23, 24] further applied the AMFP
to lead and alkali metals, and concluded that in comparison with other theoretical
models the AMFP is computationally simple, physically transparent and reliable
to study the thermodynamic properties in the high pressures and high tempera-
tures environment. Recently, Sun et al. have proven that the AMFP is an analytic
approximation of the free volume theory (FVT) [25]. The FVT is a mean field
approximation to the thermal contribution of atoms to the Helmholtz free energy
of crystalline phases. It is more valuable to directly use the strict FVT than the
approximate AMFP, in the cases that the analytic equation of state can be derived
based on the strict FVT. Nevertheless, in some cases the mean-field integral and
the equation of state (EOS) for the strict FVT are fairly complicated or cannot
be analytically derived. Then it is convenient to develop simple analytic EOS
through the AMFP, when the complete FVT fails. The AMFP has been applied
to solid C60 by using the Girifalco potential [26] by Sun [27]; the numerical results
are in good agreement with the molecular dynamics (MD) simulations [28, 29] and
superior to the correlative method of unsymmetrized self-consistent field (CUSF)
of Zubov et al. [30, 31]. This verifies that the AMFP is a convenient approach
to consider the anharmonic effects at high temperature. Thus, in this paper, we
present the results of thermodynamic properties of α-, β-, and γ-Si3N4 by using
the AMFP.
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The rest of this paper is organized as follows. In Sect. 2 we derive the
analytic EOS based on the AMFP approach. In Sect. 3, the parameters of the
Morse potential are determined by fitting the compression experimental data of
α-, β-, and γ-Si3N4 and the numerical results of thermodynamic properties are
calculated and compared with the experimental data. In Sect. 4 the conclusion is
presented.

2. Analytic equation of state

In terms of the FVT, the free energy can be expressed as [32–38]:
F

NkT
= −3

2
ln(2πµkT/h2) +

1
kT

[E1(a) + E2(a)]− ln νf +
Fqm

NkT
, (1)

where µ is the average mass per atom in Si3N4, νf is the free volume,

νf = 4π

∫ rm

0

exp(−g(r, V )/kT )r2dr. (2)

Fqm/NkT is the quantum modification, by using the Einstein model, we have

Fqm

NkT
=

Fq

NkT
− lim

T→∞

(
Fq

NkT

)
= 3 ln(1− e−ΘE/T )− 3 ln(ΘE/T ). (3)

Ec(a) = E1(a)+E2(a) is the cohesive energy of an atom, a is the nearest-neighbor
distance. Based on the embedded atom model, Ec(a) can be divided into two
parts: E1(a) and E2(a). For metal, the first part E1(a) represents the contribu-
tion of electron gas. As for Si3N4, we think that the first part E1(a) is the partial
contribution of chemical bond. The second part E2(a) represents the contribution
of the van der Waals interaction between atoms. By using the Morse potential,
we have{

E1(a) ≡ E1(y1) = ε1[exp(2λ1(1− y1))− 2 exp(λ1(1− y1))],

E2(a) ≡ E2(y2) = ε2[exp(2λ2(1− y2))− 2 exp(λ2(1− y2))],
(4)

y1, y2 is the reduced volume,{
y1 = a/r01 = (V/V01)1/3, V01 = N(r01)3/γ,

y2 = a/r02 = (V/V02)1/3, V02 = N(r02)3/γ,
(5)

where r01, r02 is the equilibrium distance, ε1, ε2 is the corresponding well depth,
λ1, λ2 describe the decrease in potential as the distance increases. γ is the struc-
tural constant, for fcc structure, we have γ =

√
2. The volume of the fcc solid is

V = Na3/γ. Si3N4 is not the fcc solid and the different phases have different crys-
tal structure, i.e., the structure constant should take different values for different
phases. However, our calculations show that the results are not sensitive to the
values of γ, thus we take γ =

√
2 for all phases.

The g(r, V ) in Eq. (2) is the potential energy of an atom as it roams from
the center atom to a distance r. In terms of the AMFP approach [19–22], g(r, V )
can be expressed by E2(a) as follows:

g(r, V ) =
1
2

[(
1 +

r

a

)
E2(a + r) +

(
1− r

a

)
E2(a− r)− 2E2(a)

]
. (6)
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rm is the largest displacement, its value can be approximately taken as the Wigner–
Seitz radius, rm = (3a3/4πγ)1/3 ≈ a/2.

In order to consider the quantum effect, we develop g(r, V ) into the quadratic
function in the equilibrium position

g(r, V ) =
1
2
µω2r2 =

1
2

[
∂2E2(a)

∂a2
+

2
a

∂E2(a)
∂a

]
r2. (7)

In terms of Eq. (7), the harmonic vibration frequency ω and the Einstein
temperature ΘE can be determined as

ΘE =
~ω
k

=
~

k
√

µ

[
∂2E2(a)

∂a2
+

2
a

∂E2(a)
∂a

]1/2

=
~

kr02
√

µ

[
∂2E2(a)

∂y2
2

+
2
y2

∂E2(a)
∂y2

]1/2

. (8)

The Grüneisen parameter can be derived as

γG = − V

ΘE

∂ΘE

∂V
= − y2

3ΘE

∂ΘE

∂Y2

= −1
6

∂3E2/∂y3
2 + (2/y2)∂2E2/∂y2

2 − (2/y2
2)∂E2/∂y2

∂2E2/∂y2
2 + (2/y2)∂E2/∂y2

. (9)

For simplicity, we introduce dimensionless reduced free volume ν̄f and re-
duced radial coordinate x as follows:

νf = 4πa3ν̄f = 4πγV ν̄f , (10)

x = r/a, xm =
rm

a
≈ 1

2
. (11)

The reduced free volume ν̄f and its derivatives with respect to temperature and
reduced volume can be expressed as

ν̄f =
∫ xm

0

exp(−g(x, y2)/kT )x2dx, (12)

ν̄fa = T
∂

∂T
ν̄f =

1
kT

∫ xm

0

exp(−g(x, y2)/kT )g(x, y2)x2dx, (13)

ν̄fb = − ∂

∂y2
ν̄f =

1
kT

∫ xm

0

exp(−g(x, y2)/kT )
∂

∂y2
g(x, y2)x2dx. (14)

Here g(x, y2) ≡ g(r, V ), combining Eqs. (4), (6) and (10), we have

g(x, y2) ≡ g(r, V ) =
1
2
[(1 + x)E2(y2 + y2x)

+(1− x)E2(y2 − y2x)− 2E2(y2)]. (15)
The compressibility factor can be derived as

Z =
PV

NkT
= −a

3
∂

∂a

F

NkT
=

PcV

NkT
+

PfV

NkT
+

PqmV

NkT
, (16)
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where PcV
NkT , PfV

NkT , and PqmV
NkT represent the contribution of cold energy, the contri-

bution of the free volume, and the quantum modification, respectively.
PcV

NkT
= − a

3kT

∂

∂a
[E1(y1) + E2(y2)] = − y1

3kT
E′

1(y1)− y2

3kT
E′

2(y2), (17)

PfV

NkT
= 1 +

y2

3ν̄f

∂

∂y2
ν̄f = 1− y2ν̄fb

3ν̄f
, (18)

PqmV

NkT
=

γGUqm

NkT
. (19)

The internal energy can be derived as
U

NkT
= −T

∂

∂T

F

NkT
=

3
2

+
1

kT
[E1(y1) + E2(y2)] +

T

ν̄f

∂ν̄f

∂T

=
3
2

+
1

kT
[E1(y1) + E2(y2)] +

ν̄fa

ν̄f
+

Uqm

NkT
, (20)

where the first term represent the ideal gas, the second term, the third term and
the fourth term represent the contribution of cold energy, the contribution of the
free volume, and the quantum modification, respectively.

Uqm

NkT
= −T

∂

∂T

Fqm

NkT
=

3ΘE/T

eΘE/T − 1
− 3. (21)

By using the above equations, all other thermodynamic quantities can be
analytically derived. The derivations are straightforward. However, the expres-
sions for thermal expansion coefficient, compressibility coefficient and isochoric
heat capacity are redundant, we would calculate these quantities by using numer-
ical differentiation instead of the analytic expressions. The compressibility factor
can be seen as function of variables T and V , Z = Z(T, V ). In terms of the func-
tion, the formulae for thermal expansion coefficient, compressibility coefficient,
and isochoric heat capacity can be reduced to the following form:

α =
1
V

(
∂V

∂T

)

P

=
[
Z

T
+

(
∂Z

∂T

)

V

] [
Z − V

(
∂Z

∂V

)

T

]−1

, (22)

β = − 1
V

(
∂V

∂P

)

T

=
(

V

NkT

)[
Z − V

(
∂Z

∂V

)

T

]−1

, (23)

CV

Nk
=

1
Nk

(
∂U

∂T

)

V

=
U

NkT
+ T

∂

∂T

(
U

NkT

)

V

. (24)

In our calculations, it is found that the following steps for the numerical differen-
tiations in Eqs. (22)–(24) can reach stable numerical results, ∆T = 0.00001 × T

and ∆V = 0.00001× V .

3. Results and discussion

In this section, we apply the above formalism to α-, β-, and γ-Si3N4. We
determine the parameters for the Morse potential in Eq. (4) by fitting the compres-
sion experimental data of α-, β-, and γ-Si3N4 [8, 13, 14]. The determined values
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of these parameters are listed in Table. Furthermore, we calculate the numerical
results of the pressure dependence of the molar volume at room temperature by
using the AMFP, and compare our results with the available experimental data
[8, 13, 14] in Figs. 1–3. It is shown that our results are in good agreement with the

Fig. 1. Comparison of the pressure dependence of the molar volume of α-Si3N4 calcu-

lated by using the AMFP at 295 K (solid line) with the experimental data by Kruger et

al. in Ref. [8] at 295 K. Open circles and cross marks show the compression experimen-

tal data and decompression experimental data, respectively. Furthermore, comparison

of the pressure dependence of the molar volume calculated at 295 K (solid line) with

the results predicted at 1000 K (dashed line), 1800 K (dash-dotted line).

TABLE

Parameter values of the Morse potential for α-, β-, and γ-Si3N4:

the well depth in K, the equilibrium volume in cm3 mol−1.

Si3N4 ε1 [K] λ1 V01 ε2 [K] λ2 V02

[cm3/mol] [cm3/mol]

α 110 2.7 155 390000 2.007 43.948

β 65000 2.8 43.69 270000 2.6 43.88

γ 95000 3 34.94 96500 2.865 34.91

available experimental data. This suggests that the AMFP is a useful approach to
study the thermodynamic properties of Si3N4. At the same time, we predict the
pressure dependence of the molar volume at several higher temperatures (T = 1000
and 1800 K), and also plot the results in Figs. 1–3. The results suggest that the
molar volume of α-, β-, and γ-Si3N4 decreases with pressure and increases with
temperature.

Substituting the determined parameter values (Table) into Eq. (4), we can
obtain the specific form of E1(a), E2(a), and Ec(a), for α-, β- and γ-Si3N4. We plot
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Fig. 2. Comparison of the pressure dependence of the molar volume of β-Si3N4 calcu-

lated by using the AMFP at 295 K (solid line) with the experimental data by Cartz and

Jorgensen in Ref. [13] at 295 K. Open circles represent the compression experimental

data. Furthermore, comparison of the pressure dependence of the molar volume calcu-

lated at 295 K (solid line) with the results predicted at 1000 K (dashed line), 1800 K

(dash-dotted line).

Fig. 3. Comparison of the pressure dependence of the molar volume of γ-Si3N4 calcu-

lated by using the AMFP at 295 K (solid line) with the experimental data by Soignard et

al. in Ref. [14] at 295 K. Open circles and cross marks show the compression experimen-

tal data and decompression experimental data, respectively. Furthermore, comparison

of the pressure dependence of the molar volume calculated at 295 K (solid line) with

the results predicted at 1000 K (dashed line), 1800 K (dash-dotted line).

E1(a), E2(a), and Ec(a) versus the nearest-neighbor distance of α-, β-, and γ-Si3N4

in Figs. 4–6, respectively. From these figures, we can see that the proportion
of E1(a) in the cohesive energy Ec(a) increases gradually with the sequence of
α-Si3N4 to β-Si3N4 and to γ-Si3N4. This suggests that the contribution of E1(a)
to the cohesive energy Ec(a) increases gradually with the sequence of α-Si3N4 to
β-Si3N4 and to γ-Si3N4.



814 Wang Li-guo et al.

Fig. 4. Potential energy as function of the nearest-neighbor distance calculated for

α-Si3N4. E1(a) (dashed line) represents the partial contribution of chemical bond.

E2(a) (dotted) represents the contribution of the van der Waals interaction between

atoms. Ec(a) (solid line) represents the cohesive energy of an atom.

Fig. 5. As for Fig. 4, but for β-Si3N4.

Fig. 6. As for Fig. 4, but for γ-Si3N4.
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Fig. 7. Free energy (a) and internal energy (b) as functions of the molar volume cal-

culated for α-Si3N4 at three temperatures by using the AMFP. The three different lines

represent the results for T = 295 K (solid line), T = 1000 K (dashed line), T = 1800 K

(dash-dotted line), respectively.

Fig. 8. As for Fig. 7, but for β-Si3N4.

Fig. 9. As for Fig. 7, but for γ-Si3N4.

The calculated free energy and internal energy as functions of the molar
volume for α-, β-, and γ-Si3N4 at various temperatures are shown in Figs. 7–9,
respectively. The free energy and internal energy of α-, β-, and γ-Si3N4 decrease
monotonically with the molar volume. The variation tendency of them with the
molar volume is identical at three different temperatures. On the other hand, the
free energy and internal energy increase with temperature. Besides, the values of
them are negative and very large. This suggests that the interatomic interaction
of Si3N4 is very strong. It decreases with the molar volume at high pressure and
approaches to flat at low pressure.
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Fig. 10. Temperature dependence of the molar volume, bulk modulus, thermal ex-

pansion coefficient and isochoric heat capacity for α-, β-, and γ-Si3N4 at zero pres-

sure. The three different lines represent the calculated results for α-Si3N4 (solid line),

β-Si3N4 (dashed line) and γ-Si3N4 (dash-dotted), respectively. The molar volume is in

cm3 mol−1, the bulk modulus is in GPa, the thermal expansion coefficient is in 10−6 K−1,

the isochoric heat capacity is in kJ mol−1 K−1.

The temperature dependence of the molar volume, bulk modulus, thermal
expansion coefficient, and isochoric heat capacity for α-, β-, and γ-Si3N4 at zero
pressure from theoretical calculation in this paper are shown in Fig. 10. The molar
volume of Si3N4 increases slowly with temperature. The molar volume of γ-Si3N4

is the smallest, β-Si3N4 is next, α-Si3N4 is the largest. This means that the density
of γ-Si3N4 is the largest, β-Si3N4 is next, α-Si3N4 is the smallest. On the other
hand, the bulk modulus of Si3N4 decreases slowly with temperature. The bulk
modulus of γ-Si3N4 is the largest, β-Si3N4 is next, then α-Si3N4. The thermal
expansion coefficient and isochoric heat capacity increase with temperature. The
thermal expansion coefficient and isochoric heat capacity of γ-Si3N4 is the largest,
α-Si3N4 is next, β-Si3N4 is the smallest. Additionally, it is worth pointing out that
our calculated results of the thermal expansion coefficient are in good agreement
with the available experimental data [10–12]. This further verifies that the AMFP
is a very useful approach to study the thermodynamic properties of Si3N4.

4. Conclusion

In summary, the AMFP approach has been applied to α-, β-, and γ-Si3N4.
The analytic expressions for the Helmholtz free energy, internal energy and EOS
have been derived. By fitting the compression experimental data of α-, β-, and
γ-Si3N4, we determine the parameters for the Morse potential. Additionally, we
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calculate the pressure dependence of the molar volume for α-, β-, and γ-Si3N4 at
room temperature by using the AMFP. The results obtained are in good agree-
ment with the available experimental data. This suggests that the AMFP is an
appropriate approach to study the thermodynamic properties of Si3N4. Further-
more, we predict the pressure dependence of the molar volume at several higher
temperatures and present the potential function of α-, β-, and γ-Si3N4 from the-
oretical calculation. By means of formalism derived in this paper, we also predict
the variation of the free energy and internal energy with the molar volume at sev-
eral higher temperatures and calculate the temperature dependence of the molar
volume, bulk modulus, thermal expansion coefficient and isochoric heat capacity
at zero pressure.
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