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We propose open-loop control model of focusing cooled quantum par-
ticles in 1D and 2D modulated optical field. Applying Kapitza’s procedure
of averaging, we demonstrate that the type of attractor in the fixed points
can be controlled by changing the parameters of control optical field. We
support our conclusions by simulation for harmonic control.

PACS numbers: 42.50.—p, 02.30.Yy

1. Introduction

The dynamics of neutral quantum particles in standing laser wave field is a
subject of great interest, stimulated by the focusing problems in nanolithography
with cooled atoms. The main task is to obtain different distributions of cooled
atoms along the standing optical wave, for instance, to form very narrow periodical
structure with a spatial period that is much less than the wavelength of the optical
radiation. The effective coherent splitting has been achieved by scattering of atom
wave packets by additional optical field with modulated intensity [1-3].

Dynamics of a neutral quantum particle (cooled atom), moving along z, in
the field of the perpendicular standing optical wave (along y) can be described in
the terms of classical pendulum with a friction [4]:

§+ By +w?siny =0, (1)
where overdots stand for time derivatives, the constant (3 plays the role of the
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“friction coefficient” for atoms, w is an oscillation frequency of the particles in the
single potential minimum, created by the standing optical field, and the coordinate
y is dimensionless, scaled by the wave number. In Eq. (1) the diffusion term is
neglected, i.e. we consider the time of the interaction between the atoms and the
optical field to be short.

We investigate the possibility to increase the focusing effect without chang-
ing the length of the optical field. We apply a control laser field, that leads to the
additional term in dynamic equation for the single particle motion

i+ By +w?(1 +u)siny = 0. (2)
Here u is the control action [5], which may depend on current position and ve-
locity of the atoms. In this case the closed-loop (feedback) algorithm should be
applied [4]. Nevertheless, it can be very difficult to organize the fast measure-
ment of the atomic distribution along y-direction, and the feedback scheme looks
over-sophisticated for practical realization of focusing. For this reason we will con-
centrate below on open-loop (feedforward) algorithms of control. It means that
we suppose the signal u(t) to be dependent on time only.

The goal of this article is to formulate the simple mathematical model for the
process of 1D and 2D focusing in the frame of open-loop control. We investigate
the opportunity to fabricate narrow spatial periodical structures by application of
simple form of fast optical modulation. In Sect. 2 we discussed our approach in
detail for 1D case, and then in Sect. 3 we present some features of 2-dimensional
focusing. In Appendix we support our conclusions by numerical simulations for
harmonic control.

2. Mathematical model of one-dimensional focusing

To apply efficiently open-loop algorithm for the fabrication of narrow spatial
structures we will use the idea of the Kapitza averaging, first proposed in [6] and
described in detail in [7]. Let us consider the case of 1D focusing by fast oscillating
control u(t). For simplicity we will discuss here the harmonic case

u(t) = Acos(vt + ) (3)
with constant A, v, p. We demand: v > w.

Following [6, 7], for the sufficiently large frequency v we can present the
coordinate y as a superposition of its “smooth” part Y and the fast changing
component 7:

y=Y+n,
the last one comes from the control perturbation. We define n by

i+ 81 + w?u(t)sinY = 0. (4)
Here Y is quasi-integral of motion. Because the control is fast, we will omit the

friction coefficient, supposing that the #-decay is slow to compare with the control
period 27 /v. Then Eq. (4) becomes

ij + w?Acos(vt + ¢)sinY =0, (5)
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with the solution
n = AesinY cos(vt + ),

where ¢ = w?/v? is a small parameter. Now we can expand sinY in the Taylor
series, keeping the second order of 7:

1
sinY =sinY +ncosY — 57725111}/,

and substitute it into equation
Y +ii+ B(Y + 1) + w? (1 +u)sin(Y +1n) =0, (6)
taking into consideration the definition (4). The key step is the Kapitza averaging

o= [

with the properties
Y)=Y, (n)=0,
such that, for example,
(ncosY) =cosY(n) =0,

etc. Then the averaged Eq. (6) can be written as

. . 1 1
Y + BY +w? (1 - 2<n2>) sinY + w? ((un) cosY — §<un2> sinY) =0, (7
where

1 1
(°) = GAPEsin’ Y, (ug) = S A%esinY.
Finally, saving the terms of the zero and first order with respect to the small

parameter €, we get a closed equation for the “slow” coordinate Y of the particle
. . 1
Y + BY +w?sinY + ngAQesinYcosY =0. (8)

Thus, the correction of the smooth movement Y by fast control leads to the
famous Kapitza effect of the design for stability points of the dynamical system.
It is sufficient if the coefficient A2%e is not small, i.e. if the amplitude A of the
control is large (because € is a small parameter by definition).

To check it we calculate the Lyapunov spectra [8] for the system (8).
The fixed points of this system on the phase plane (Y,Y) are (0,0), (r,0) and
(arccos(—2/A%¢),0). We remind that here, despite the looking of Eq. (2) like
a mechanical pendulum equation, our phase space is not cylindric, and every
fixed point mentioned above corresponds to the infinite set, like: (7, 0) stands for
(m + 27n,0), where n is integer, and so on. We are interested in the Lyapunov
spectra with the signs {—, —} to reproduce a focusing effect.

At the fixed point (0,0) the Lyapunov spectrum is always {—, —}. It means
that the focusing around these points always presents in our periodical structure,



754 S. Borisenok, N. Igbal

and it reproduces the period of the standing wavelength. At the fixed point (7, 0),

¢

corresponding to the “inverse position” of the “pendulum”, the Lyapunov spec-

trum is {—, =} if

2
ﬁ <eK 1, (9)
and at the non-trivial point (arccos(—2/A42%¢), 0) the spectrum {—, —} is impossible.

In general, such a structure corresponds to the famous case of vertically
driven Kapitza pendulum. Its inverse position becomes stable under the condi-
tion (9). Thus, we can switch on and off this periodicity of focusing, changing the
parameter A.

3. Some features of 2-dimensional case

Equation (2) can be easily generalized for the 2D case, when two optical
fields interact with the atomic beam in perpendicular directions to the beam and
to each other

d? d .

T+ +eill+w(t)]sing =0,

d? d

dftj-kﬁd—'tz—f—wg[l—i—ug(t)] sinz = 0. (10)

This system is shown in Fig. 1. Here 3, w1, ws are positive coefficients, and u; and
ug correspond to two perpendicular control fields along y and z correspondingly.

y

4]

cooled atoms

yd
B

Fig. 1. Geometric structure of 2D control optical fields.

We can conclude from Eq. (10) that the atomic dynamics structure is simpler
than for the mechanical pendulum, because two equations in (10) are independent.
For this reason in the case of fast control we can apply the same scheme as for the
1D case, extending it into 2D to form periodical structures. Of course, applying
different parameters of u1, us, we can fabricate spatial distributions with different
periods with respect to y and z directions.
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Fig. 3. f =sin, ¢ = 30.

Nevertheless, we should give a warning that in general our model reflects an
averaged behavior with respect to the smooth coordinates Y and Z. But another
behavior can be observed for the non-averaged particle dynamics with different
vy, Vg, which are not necessary much greater than wi/we. This warning can be
especially important in 2D case, because we know from classical mechanics that
the rationality or irrationality of the relations wy/we and vy/vs can change the
phase trajectories drastically.
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Fig. 4. f = signum(sin), ¢ = 0.
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Fig. 5. f = signum(sin), ¢ = 30.

The detailed numerical investigation of the system behavior is not a sub-
ject of this paper. But to make the picture more clear, let us discuss here some
simulations of single particle behavior under the dynamics (10).

As we saw in Sect. 2, the initial phase ¢ is not sufficient for the averaged
system. Let us put it to be 0 for y-control, and take it ¢ for z-control. We
have 4 different variants for focusing attractors at the points (0,0, 0,0), (0,0, 7, 0),
(r,0,0,0) and (7,0, 7,0) (they have no simple mechanical analogues anymore).
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Fig. 7. f = cos, ¢ = 30.

In Figs. 2-7 we draw phase portraits (on yz-plane) of our model at the fixed
point (0,0,0,0) for different shapes of open-loop signals u1 2. We put the same
shape for both control signals, and apply the same amplitudes (these signals are
much more simple to be created practically). We apply sin, signum of sin, and
cos to demonstrate that for the fast control (11 > wy and vs > ws) the shape of
control signal is not very sufficient. We also can observe relatively small difference
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for different meanings of the initial phase . What is really important, as we can
expect, it is the relations of v, vo, w; and ws.

In Figs. 2-7 we plot 4 pictures: the left column corresponds to the rational
relations of wy/wsy, the right column — irrational wy/wy; the row above contains
the rational relation of v /vg, the row below — irrational. From the comparison
we can conclude that the rational relation for w;/we is preferable, and for vy /vy
the rationality /irrationality is not very sufficient.

4. Conclusions

It is known very well that the methods of fast oscillating control of Kapitza’s
type are efficiently applicable for different systems of classical physics. In quantum
mechanics the picture is different, and the difficulties come from the extending of
mathematical language of classical control into non-classical areas. Nevertheless,
in the case of quasi-classical models (like in this paper) the formulation of open-
-loop methods (with control fields depending only on time) is not problematic.

Our model of control for focusing of quantum neutral particles has some
important features:

1. Tt can be very easily realized in experiment, because now there are no
difficulties to construct different shapes of optical laser fields.

2. It allows to re-formulate it for a wide spectrum of open-loop and closed-
-loop control methods, i.e. for the cases of coordinate-dependent or indepen-
dent u; 5. The natural extension can be the detailed investigations of different
shapes of control, not necessary harmonic.

3. We can change the type of attractor in the fixed points of our system by
changing the parameters of control optical field.
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Appendix. Phase portraits on yz plane

In Figs. 2-7 we construct the phase portraits of the system (10) on yz plane.
We draw the plots in the neighborhood of the fixed point (0,0,0,0). Here

u(t) = A1 fi(nt); uz(t) = Az fa(vat + ).
In every Figs. 2-7: 8 =0.1, Ay = Ay = 1, fi = fo = f, the set of initial
conditions: y(0) = z(0) = 0.1, y(0) = £2(0) = 0; and

(&) w1 =1, we =2, v1 =10, vy = 12;
1:13 wQZﬁv V1:107 V2:12;

(b) w
(c) wy =1, wo =2, 11 =10, vp, = V10;
(d) w1 =1, wy = V2, 1y =10, vy = V10.
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In Figs. 2 and 3 we take the sin shape of the control signals, in Figs. 4

and 5 — signum(sin), and in Figs. 6 and 7 — cos. Thus, we put figures for the
different shapes f of the control signals and the different initial phase ¢ (the phase
is measured in grades).

2

=

0,

We remind that in our model all the parameters are dimensionless.
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