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In the framework of the Keldysh–Faisal–Reiss theory in the velocity

gauge we investigate the magnitude of the space region, where photoion-

ization in a strong laser field takes place. We find substantial differences

between the short-range and the long-range (Coulomb) potentials, and be-

tween linear and circular polarizations of incident radiation. It appears that

only for the initial state in the Coulomb potential the region of space, where

ionization is held, expands significantly with increasing intensity for a typ-

ical optical frequency and non-relativistic but strong circularly polarized

laser field. As a result of our considerations, we suggest to modify the idea

of Reiss and Krainov of a certain simple Coulomb correction to the Volkov

wave function. We show that photoionization rate calculated for the H(1s)

atom, using our approach, is in better agreement with other theoretical re-

sults for moderately strong circularly polarized laser field.

PACS numbers: 32.80.Rm, 42.50.Hz

1. Introduction

In 1994 Reiss and Krainov published the paper entitled “Approximation for
a Coulomb–Volkov solution in strong fields” [1], where the well-known Volkov (or
Gordon–Volkov) wave function [2, 3], multiplied by a time-dependent exponential
factor, has been used as a final state in the Keldysh–Faisal–Reiss (KFR) theory
[4–8]. Although this Coulomb correction is remarkably simple (and resolves itself
into a small shift of the binding energy of the H(1s) atom), it can increase the
calculated ionization rate by a few orders of magnitude (see, for example, Fig. 2
of [1]). One can also derive the Coulomb–Volkov wave function (Eq. (5) in the
present paper) using the non-perturbative path-integral approximation [9, 10].
One of the assumptions utilized in [1] is the following one: the most significant
contribution to the transition matrix element should be given by the region of
small electron–nucleus distances, because the atomic ground state is located there
(see the text below Eq. (7) of [1]). It is the main purpose of the present paper to
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investigate validity of the statement more exactly. We will show that for ionization
in a strong laser field the above mentioned region may be much greater.

Our paper is organized as follows. In Sect. 2 we derive strong-field ionization
rates (in the version of Faisal–Reiss [6, 7]) in finite spatial region and compare
them numerically with standard results. Based on the comparisons we propose
new Coulomb correction to the Volkov wavefunction and we calculate ionization
rates resulting from the correction in Sect. 3. There we also give an example
showing that our method leads to results closer to other well-known theoretical
calculations. There are concluding remarks in Sect. 4.

2. KFR theory in finite spatial region
Unlike in [1], only the laboratory frame of reference is utilized in this paper.

We consistently use atomic units (a.u.) here: ~ = e = me = 1, substituting ex-
plicitly –1 for the electronic charge. We keep any electric charge Z of the nucleus
in all the equations given below, but finally, in all the numerical calculations, we
put Z = 1, like for the hydrogen atom. Let us consider a wave function which is
the exact solution of the following time-dependent Schrödinger equation (TDSE):

i
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1
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]
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where A(t) is the vector potential of the laser field (in the dipole approximation)
and r denotes the distance of the electron from the center of the atom (or ion). In
the S-matrix theory of photoionization one uses stationary solutions of the TDSE
with positive energy E = p2/2 > 0 and p — the asymptotic (when r → ∞) mo-
mentum as a parameter. Since one cannot solve Eq. (1) analytically, it is rather
difficult to take something for granted in the general case, particularly if neither
the laser field nor the Coulomb one can be treated perturbatively. However, for
sufficiently strong laser field one can approximate the solution of Eq. (1) by the
solution of the following equation:
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This solution is the well-known non-relativistic Volkov wave function (where p is
a parameter)
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Substituting Eq. (3) into Eq. (1) one obtains
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One should expect, looking at Eq. (4), that the above approximate equality im-
proves when either p or the amplitude of A(t) increases. The canonical momentum
p in Eqs. (3) and (4) differs from the kinetic momentum π(t) = p + A(t)/c, and
they coincide only when A(t) = 0. (In the velocity gauge KFR theory [7, 8] one
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assumes that limt→±∞A(t) = 0.) In photoelectron energy spectra, due to selec-
tion rules for angular momentum, one obtains the greatest multiphoton partial
ionization rates (above-threshold ionization peaks) for some values of the final ki-
netic energy E = p2/2 of the outgoing electron. These values depend on the kind
of polarization of the laser field and on its intensity. For linear polarization the
low-energy electrons always dominate, but for circular polarization electrons with
much higher energy E = p2/2 ≈ UP = I/2ω2 usually dominate (UP is the pondero-
motive potential and I, ω are the laser intensity and frequency) [11]. Therefore for
the hydrogen atom, particularly for circular polarization and high intensity of the
laser field, for most ionized electrons Eq. (4) is very well satisfied. In other words,
these electrons appear well in the continuum of ionized states and the Volkov wave
function is a very good approximation to the exact solution of Eq. (1). Much the
same, the Coulomb–Volkov wave function derived by Reiss and Krainov [1]:
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(where α0 is the radius of the circular classical motion of a free electron in the
circularly polarized laser field) is also quite good approximation to the exact so-
lution of Eq. (1). Substituting Eq. (5) into Eq. (1) one obtains[
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The improvement due to the appearance of the term −Z/α0 on the left-hand side
in the approximate equality is substantial only for very large r, because Reiss and
Krainov have assumed that α0 À 1/Z [1]. The Coulomb correction −Z/α0 may
be very small due to large α0 and the correction tends to zero for very intense
fields, because α0 ∝

√
I.

Let us consider the influence of the distance of an ionized electron from
the center of an atom (or ion) on ionization rate. Within the limits of the
S-matrix theory of photoionization we can do it in the following way. The general
analytical expressions for ionization rate of the spherically symmetric initial state
in the strong-field approximation (SFA) [6, 7] are
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for circular and linear polarization respectively, where p2
n/2 = (n−z)ω−EB is the

final kinetic energy of the outgoing electron and its binding energy in the initial
state is EB. (In Eqs. (7) one does not necessary assume that EB = Z2/2.) If the
state is the H(1s) atom Φ̃i(p) (in the momentum space, normalized to unity in
the entire space), then EB = Z2/2 = 0.5 a.u. (We refer the reader to our recent
paper [12] and to [7] for more details regarding Eqs. (7).) The expressions (7)
have been obtained after integration over all possible positions r of the electron
in space (when calculating the S-matrix element). This means that all possible
electron distances from the center of an atom (or ion) 0 ≤ r ≤ ∞ contribute to
ionization rates in Eqs. (7). Let us check what is indeed the maximum distance
R of the electron from the center of an atom (or ion), which really contributes to
ionization rates in Eqs. (7). To this end we have derived expressions analogical
to Eqs. (7), but with 0 ≤ r ≤ R. To achieve this instead of the initial state wave
function Φi(r) one can use the following “wave function”:

ΦR(r) = Φi(r)[1− θ(r −R)] =

√
Z3

π
exp(−Zr)[1− θ(r −R)] (8a)

(θ(x) is the Heaviside step function), which does not have to be normalized to
unity in the entire space or obey exactly everywhere in space the time-independent
Schrödinger equation. In fact, Eq. (8a) only shows that in the calculation of ion-
ization rate the distances 0 ≤ r ≤ R from the ionic core have been taken into
account. Equation (8a) leads to

Φ̃R(p) =
∫

d3r

(2π)3/2
ΦR(r) exp(−ipr) =

√
2Z3

πp(p2 + Z2)2
{2Zp + e−ZR

×[(p2 − p2ZR− Z2 − Z3R) sin pR− (p3R + 2pZ + pZ2R) cos pR]}.(8b)
(From Eq. (8b) one obtains the well-known expression for Φ̃i(p) in the limit
R → ∞.) Replacing EB = Z2/2 by E′

B = Z2/2 − Z/α0 in Eq. (7a) one ob-
tains the so-called Coulomb corrected strong-field approximation (CSFA) [1]. In
Fig. 1 we plot the CSFA ionization rate of the H(1s) atom as a function of intensity
of the laser field for ω = 0.074 a.u. (λ = 616 nm — a typical optical wavelength)
and a few different R’s (thus Φ̃i(p) is replaced by Eq. (8b) in Eq. (7a)). The range
of intensities corresponds to 10 a.u. ≤ α0 ≤ 100 a.u. in Fig. 1. Let us have
a look at consecutive curves on this graph. It is obvious that certainly neither
R = 2 a.u. nor R = 4 a.u. can properly describe ionization rates for all intensities
shown here. We have also checked that even for a few intensities, where ionization
rates are equal with those of R = ∞ (see the intersection points of the R = 2
a.u. and R = 4 a.u. curves with the R = ∞ one in Fig. 1) the photoelectron
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Fig. 1. The CSFA ionization rate (of the H(1s) atom) as a function of intensity for

ω = 0.074 a.u. in the range of intensities corresponding to 10 a.u. ≤ α0 ≤ 100 a.u.

for the circularly polarized laser field. The solid line (R = ∞) is the Reiss–Krainov

result [1]. The other three ionization rates have been calculated assuming that only

0 ≤ r ≤ R contribute to the S-matrix element (respectively, for R = 2, 4, 6 a.u.).

energy spectra are significantly deformed. One needs at least about R = 6 a.u.
to properly reproduce the R = ∞ result for the laser field parameters shown in
Fig. 1. Moreover, the limiting value of R, which reasonably describes ionization
rate, grows with increasing intensity. What is even more interesting, in spite of the
fact that the “wave function” (8a) is normalized to less than unity (for example,
when R = 2 a.u. one obtains

∫
d3r|ΦR(r)|2 ≈ 0.762), for some intensities and for

finite R one obtains much greater ionization rate than the true (R = ∞) CSFA
result. It appears that the quantum-mechanical interference effect plays a very im-
portant role in the strong-field photoionization. For the highest intensities shown
in Fig. 1 it is the destructive interference of different possible space positions r of
ionized electron, roughly from 0 ≤ r ≤ 6 a.u., that produces the true (R = ∞)
CSFA result.

What is the effect of finite R for much higher intensities of the laser field?
We show it for the SFA (EB = Z2/2 in Eqs. (7)) in Figs. 2 and 3 for both
circular and linear polarization, respectively. The range of intensities corresponds
to limitations of the non-relativistic SFA in Figs. 2 and 3 (1 ≤ z1 and zf ≤ 0.1,
where z1 = 2UP/EB and zf = 2UP/c2; see [7, 12] for more details). It appears
that for circular polarization and laser fields strong enough R = 6 a.u. or even
R = 8 a.u. are not sufficient to properly describe ionization rate in the SFA. In
contrast, for linear polarization the assumption that only r <∼ 1 a.u. contribute to
ionization rate is quite well satisfied for the laser field parameters from Fig. 3.

In principle, the SFA has been introduced for short-range potentials [7] and
it should work better in this case than for the long-range Coulomb potential.
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Fig. 2. The SFA ionization rate (of the H(1s) atom) as a function of intensity for

ω = 0.074 a.u. in the range of intensities corresponding to 1 ≤ z1 and zf ≤ 0.1 for the

circularly polarized laser field. The solid line (R = ∞) is the Reiss result [7]. The other

four ionization rates have been calculated assuming that only 0 ≤ r ≤ R contribute to

the S-matrix element (respectively, for R = 2, 4, 6, 8 a.u.).

Fig. 3. The SFA ionization rate (of the H(1s) atom) as a function of intensity for

ω = 0.074 a.u. in the range of intensities corresponding to 1 ≤ z1 and zf ≤ 0.1 for the

linearly polarized laser field. The solid line (R = ∞) is the Reiss result [7]. The other

three ionization rates have been calculated assuming that only 0 ≤ r ≤ R contribute to

the S-matrix element (respectively, for R = 0.5, 1, 1.5 a.u.).

Therefore let us also check the effect of finite R for the zero-range potential for the
same binding energy (EB = Z2/2) and laser field parameters as in the Coulomb
potential case. On the analogy of Eqs. (8) we obtain
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Φ0R(r) = Φ0(r)[1− θ(r −R)] =

√
Z

2π

1
r

exp(−Zr)[1− θ(r −R)], (9a)

Φ̃0R(p) =

√
Z

π(p2 + Z2)

[
1− e−ZR

(
Z

p
sin pR + cos pR

)]
, (9b)

and we substitute Eq. (9b) into Eqs. (7). Also in this case, in the limit R →∞, one
has the initial state wave function which is exact. Moreover, the SFA ionization
rate for the zero-range potential is gauge-invariant, i.e. the length and velocity
gauge results are identical [12, 13].

Fig. 4. The SFA ionization rate (of the only bound state in the zero-range potential

with EB = 0.5 a.u.) as a function of intensity for ω = 0.074 a.u. in the range of

intensities corresponding to 1 ≤ z1 and zf ≤ 0.1 for the circularly polarized laser field.

The solid line (R = ∞) is the result of Eq. (7a) (with the substitution of Eq. (9b) for

R → ∞). The other three ionization rates have been calculated assuming that only

0 ≤ r ≤ R contribute to the S-matrix element (respectively, for R = 0.5, 1, 2 a.u.).

In Figs. 4 and 5 we present ionization rate (for an electron bound by this
potential) as a function of intensity for the circular and linear polarization of the
laser field, respectively. It appears that for the zero-range potential and both
polarizations ionization always takes place roughly inside the sphere of the radius
R ≈ 2 a.u. It follows from Fig. 5 that for linear polarization the radius of the
sphere, where ionization takes place, decreases with increasing intensity. This is in
good qualitative agreement with the evaluation given by Gribakin and Kuchiev in
[13]. For example, for the following intensities: I = 0.01 a.u., 0.1 a.u., and 1.0 a.u.
one obtains R = 2.8 a.u. 1.8 a.u. and 1.0 a.u., respectively, from Eq. (2) of [13].
(Let us note that in their paper the H− ion was considered with much smaller
binding energy and therefore much larger R, but Eq. (1) of [13] is satisfied in our
case, because ω = 0.074 a.u. ¿ 0.5 a.u. = EB.) It follows from Figs. 2–5 that the
Coulomb potential case in the circularly polarized strong laser field is exceptional
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Fig. 5. The SFA ionization rate (of the only bound state in the zero-range potential

with EB = 0.5 a.u.) as a function of intensity for ω = 0.074 a.u. in the range of

intensities corresponding to 1 ≤ z1 and zf ≤ 0.1 for the linearly polarized laser field.

The solid line (R = ∞) is the result of Eq. (7b) (with the substitution of Eq. (9b) for

R → ∞). The other three ionization rates have been calculated assuming that only

0 ≤ r ≤ R contribute to the S-matrix element (respectively, for R = 0.5, 1, 2 a.u.).

Fig. 6. The SFA ionization rate (of the H(2s) atom) as a function of intensity for

ω = 0.074 a.u. in the range of intensities corresponding to 1 ≤ z1 and zf ≤ 0.1 for the

circularly polarized laser field. The solid line (R = ∞) is the Reiss result [7]. The other

five ionization rates have been calculated assuming that only 0 ≤ r ≤ R contribute to

the S-matrix element (respectively, for R = 5, 10, 15, 20, 25 a.u.).

in a way because photoionization takes place in much larger space than in the
remaining three cases.
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In Fig. 6 we show the SFA ionization rate of the H(2s) atom as a function of
intensity for ω = 0.074 a.u. in the range of intensities corresponding to 1 ≤ z1 and
zf ≤ 0.1 for the circularly polarized laser field (since for the first excited state of
the hydrogen atom EB = Z2/8 = 0.125 a.u., the condition z1 = 1 corresponds to
lower intensity than in Figs. 1–5). For this initial state, which we treat analogically,
below we only give its momentum space “wave function” for finite R (Eq. (10) is
analogical to Eqs. (8b) and (9b), and here one obtains the exact Φ̃i(p) for the
H(2s) atom in the limit R →∞):

Φ̃R(p) =
Z3/2

4πp

∫ R

0

dr(2r − Zr2)e−Zr/2 sin pr =
Z3/2

2πp(4p2 + Z2)3

×{128p3Z − 32pZ3 + exp(−ZR/2)[sin pR(64p4 − 96p4RZ

−96p2Z2 + 16p4R2Z2 − 16p2RZ3 + 4Z4 + 8p2R2Z4 + 2RZ5 + R2Z6)

+ cos pR(−64p5R− 128p3Z + 32p5R2Z + 32p3RZ2

+32pZ3 + 16p3R2Z3 + 12pRZ4 + 2pR2Z5)]}. (10)
It follows from Fig. 6 that the spatial region that really contributes to ionization
rate expands from about R = 10÷15 a.u. to R ≈ 25 a.u. with increasing intensity.
Of course, this is connected with the fact that the H(2s) atom is larger than the
H(1s) atom (for instance, 〈r〉 = 3/2 a.u. for H(1s), and 〈r〉 = 6 a.u. for H(2s)).

3. Coulomb correction to the Volkov wave function
Let us now treat these ionization rates for finite R as a hint for finding a

better Coulomb correction in the SFA ionization rate formula for circular polar-
ization (Eq. (7a) with R = ∞). Figures 1, 2 and 6 suggest that instead of the
−Z/α0 Coulomb correction in Eq. (6) one could use −Z/Reff(ω, I) to compensate
partially the term −Z/r on the right-hand side of this equation. The effective
(or phenomenological) parameter Reff would be a certain function of the laser fre-
quency and intensity (however, we have numerically checked that the dependence
of Reff on frequency is very weak for 0.01 a.u. < ω < 1 a.u. and one can use
the same Reff as for ω = 0.074 a.u.). Therefore the Volkov wave function would
be multiplied not by exp(iZt/α0), but rather by exp(iZt/Reff) in Eq. (5). Let
us stress again (which is particularly visible in Figs. 1, 2 and 6) that there is no
electron–nucleus distance, around which (in a small volume) the strong-field ion-
ization in the circularly polarized laser field is well localized. Always at least a
few atomic units is necessary “to produce” the SFA ionization rate. The region
r <∼ 1/Z is indeed very important for the transition matrix element, but this is
not the only important region. If we substitute the Volkov wave function multi-
plied by exp(iZt/Reff) into Eq. (1) (for the fixed ω, I and p) the relative error
on the left-hand of this equation will depend on both r and t, and the error will
be proportional to |Z/r − Z/Reff |. Therefore for very small electron–nucleus dis-
tances r our Coulomb correction improves accuracy of the Volkov wave function
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only slightly. However, larger electron–nucleus distances in number dominate and
for r >∼ 1/Z the above mentioned relative error decreases considerably. For that
reason we expect that utility of our Coulomb correction should grow with the size
of an atom (for example with the principal quantum number n for excited states
of H(ns)).

Fig. 7. Various theoretical ionization rates (of the H(1s) atom) as a function of intensity

for ω = 0.074 a.u. and the circularly polarized laser field (see text for details).

As a result, in the SFA ionization rate formula the binding energy (for the
H(1s) atom) would be replaced by E′

B = Z2/2 − Z/Reff . In Fig. 7 we show such
ionization rates (by two identical solid lines) as a function of intensity for the
circularly polarized laser field for two different constant values Reff = 5 a.u. and
Reff = 10 a.u. Roughly these values are suggested by Fig. 2 for ω = 0.074 a.u. as
the limits between which our new Coulomb-corrected SFA ionization rate could
run across. (For the lowest intensities shown in Fig. 2 Reff ≈ 5 a.u., and for
the highest intensities — Reff ≈ 10 a.u.) For comparison we also show the SFA
and the CSFA ionization rates in Fig. 7. In the figure there are also some other
theoretical calculations (analytical formulae were derived by other authors), which
are valid for smaller intensities, but which have some common range of validity with
the above mentioned various strong-field calculations. The Floquet calculations
have been taken from Fig. 5 of [14]. The WKB Coulomb corrected KFR theory
[15, 16, 12, 17], in both gauges, has a high-intensity limit connected with existence
of the Coulomb barrier and the critical laser field strength [14] in the H(1s) atom.
The WKB–Reiss ionization rate has been calculated from Eq. (9a) of [17] and the
WKB–Keldysh one from Eq. (32a) of [12]. One can easily observe that in Fig. 7,
around I = 0.01 a.u., the curve with Reff = 5 a.u. is much closer to the Floquet
and the WKB Coulomb corrected KFR results than the SFA and CSFA curves.
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4. Concluding remarks

In conclusion, the main result of the present paper is revealing that photoion-
ization takes place in much greater volume than one could expect (r <∼ 1/Z), if the
following three conditions are simultaneously satisfied: (i) the binding potential is
the (long-range) Coulomb one, (ii) the laser field is strong enough, and (iii) the
laser field is circularly polarized. For the zero-range potential (for both polariza-
tions) or for the Coulomb potential (when the laser field is linearly polarized) the
ionization takes place inside the sphere of the radius of about 2 a.u. (if Z = 1 and
EB = Z2/2). This is another explanation why the SFA should work much better
for the circular polarization than for the linear one, if the ionized electron interacts
with the Coulomb potential. In contrast, when the outer electron interacts with
the short-range (or zero-range, in theory) potential, like in H− ion, the SFA is
also a very good approximation, because the binding energy is much lower and
the initial-state wave function is much more extended in space than in the atomic
case.

One should stress that our results for the Coulomb potential (unlike for the
zero-range potential) may be gauge-dependent. Analogous calculations (with finite
R instead of R = ∞) in the length gauge would be much more difficult. However,
it follows from the general form of the S-matrix element in the KFR theory that
great electron–nucleus distances can be even more significant (for the calculated
ionization rate) in the length gauge than in the velocity gauge (see also [13]). For
a given frequency and an intensity of the laser field, with the help of our method,
one can always approximately find the parameter Reff(ω, I). The parameter would
be the smallest finite R such that the ionization rate and the photoelectron energy
spectrum is nearly identical with the ordinary KFR result (with R = ∞). Our
Coulomb correction is not univocal and cannot be expressed by a simple analytical
formula (like the Reiss–Krainov result [1]). For example, the simplest choice for
the hydrogen atom is the following binding energy: E′

B = EB − 1/Reff , where
Reff = 10 a.u. for H(1s) and Reff = 25 a.u. for H(2s). Our Coulomb correction
always results in a greater and more accurate ionization rate.
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