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Electronic stopping power of compounds was calculated by using the

Thomas–Fermi–Dirac–Weizsäcker density functional. Bragg’s rule was em-

ployed to determine stopping power of compounds from the elemental stop-

ping power results. Calculations were done for Be, B, O, and Si ions in Al2O3,

SiO2, and CO2 targets by using the Thomas–Fermi–Dirac–Weizsäcker den-

sity functional. The obtained results were compared with other Thomas–

Fermi based theoretical calculations and show that using Thomas–Fermi–

Dirac–Weizsäcker density functional in stopping power calculations yields

reasonably accurate results in especially light systems (with respect to the

number of electrons in the system).

PACS numbers: 34.50.Bw, 34.10.+x

1. Introduction

Stopping power, energy loss of energetic particles per unit length in mat-
ter, has been studied experimentally and theoretically since the beginning of the
20th century because of its wide areas of application, such as ion implantation,
fundamental particle physics, nuclear physics, radiation damage, radiology.

The first quantum mechanical study of stopping power was done by Bethe [1].
Bethe theory of stopping is valid when the projectile’s velocity is higher than the
Bohr velocity. In Bethe theory, the target is assumed as an elemental material. On
the other hand, for compound targets, it is very common to use Bragg’s rule [2].
According to this rule, the stopping power of a compound can be calculated by
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704 M.Ç. Tufan, H. Gümüş

the linear combination of the stopping powers of the individual elements

Se,C =
∑

i

niSe,i, (1)

where Se,C and Se,i are the electronic stopping cross-sections of compound and
element i, respectively, and ni is the molar fraction of element i and such that∑

i ni = 1.
Although it has been widely applied to compound targets, Bragg’s rule is in-

adequate below the Bethe region of stopping (when projectile’s velocity is not high
enough for the Bethe approximation to be valid) and also for light projectile–target
systems. The deviation of stopping powers in compounds from that estimated with
Bragg’s rule can be found in a great number of experimental articles and many
of these reviewed by Thwaites [3–5]. However, if one accurately calculates the
stopping power for elemental targets, obtained results by using Bragg’s rule can
be more reliable for compounds targets.

In our recent work [6], we calculated stopping power of Al2O3, O2, and SiO2

for O and Si ions, by using the Thomas–Fermi atomic model and Tietz [7] and
Ziegler et al. [8] screening functions. In Ref. [9], we calculated stopping power
cross-sections of C and Al for C, O, and Si ions by using Ziegler’s screening func-
tion. In our calculations, atomic electronic density plays a key role. In our previous
paper [6], we used the Thomas–Fermi (TF) atomic electron density [10, 11] with
two different screening functions to investigate the effect of screening functions on
stopping power. In the present paper, we use a more realistic atomic electron den-
sity within the Thomas–Fermi–Dirac–Weizsäcker (TFDW) model [12] to calculate
stopping power of compounds.

2. Calculation of stopping power in the first Born approximation

In the first Born approximation [13], when a projectile with atomic num-
ber Z1 and velocity v collides with a stationary target of atomic number Z2, the
stopping power depending on the number of bound electrons to the projectile,
effective charge of target and effective mean excitation energies of both projectile
and target is given by [9]:

Se(v) =
2e4

mev2

×
∫ qmax

qmin

{
Z∗2 [Z1 − 1Mn0n0(q)]2 + N1 [Z2 − 2Mm0m0(q)]2

} dq

q2
, (2)

where Z∗2 is the number of active target electrons, N1 is the number of electrons
bound to the projectile, 1Mn0n0(q) and 2Mm0m0(q) atomic form factors of projec-
tile and target, respectively. The projectile–target systems undergo a transition
from the electronic state |n0〉 for projectile and |m0〉 for target to final states |n〉
and |m〉, respectively, with energies En and Em. During the collision, the ki-
netic energy of the projectile is thereby reduced by (En − En0) + (Em − Em0) =
~(wnn0 + wmm0). Integration limits in Eq. (2) are defined as [14]:
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qmin =
wnn0 + wmm0

v
, qmax =

2meν

~
. (3)

For qmin Cabrera-Trujillo et al. [14] have suggested an applicable average
value which is independent of the excited state of the system

qminAV =
(wnn0 + wmm0)AV

ν
=

ε

~ν
, (4)

and according to [9] ε is

ε = 2I
∗1/(1+α)
0 1I

∗α/(1+α)
0 , (5)

where α is [14]:

α =
(Z2 − Z∗2 )2 N1

(Z1 −N1)
2
Z∗2

. (6)

Let us note that ε, given here, is different from that of our previous papers [6, 9]
because there was written the factor Z∗1/N1 in the exponential term by mistake.

3. Determination of the N1(v), Z∗2 (v) and effective mean excitations
energies from the Bohr adiabatic criterion

To calculate the number of electrons bound to the projectile and the number
of active electrons of target, it is convenient to use Bohr adiabatic criterion [15, 16].
According to this theory the electrons whose orbital velocities are lower than the
projectile’s velocity are stripped from the projectile. Mathematical formulation of
this criterion is given by Yarlagadda et al. [17]:

v = bvF(rc), (7)

where v is the velocity of projectile, vF(r) = ~
me

[
3π2ρ(r)

]1/3 is the Fermi velocity,
ρ(r) is the electron density, b is a constant of order of 1.26 and rc is the critical
distance where velocity of electron equals to the velocity of projectile (ve = v).

After the calculation of critical distance, the number of electrons bound to
the projectile is obtained from

N1 =
∫ rc

0

4πr2ρ(r)dr. (8)

Similarly, by considering symmetry between projectile and target, Sugiyama
[18, 19] suggested the number of active electrons of target and effective mean
excitation energies can be calculated by

Z∗2 =
∫ ∞

rc

4πr2ρ(r)dr, (9)

and

ln I∗ =
1

Z∗

∫ ∞

rb

ln [γ~wp(r)] 4πr2ρ(r)dr. (10)

Here, r is the distance from the nucleus, wp(r) =
[
4πe2ρ(r)/me

]1/2 is the plasma
frequency and γ is a parameter with value around

√
2 [20].
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4. Electronic charge density
Atomic electron density is the key parameter in our stopping power calcula-

tion. To calculate the quantities described in the previous section, firstly atomic
electron density has to be defined; the more accurate electron density yields the
more reliable results.

The Thomas–Fermi electron gas model does not account for the shell struc-
ture of the atom. However, it was shown that optimized energies and resulting
atomic densities correspond to the Hartree–Fock (HF) values when shellwise elec-
tron density is introduced in the TFDW density functional [21, 22]. It is well
known that the Hartree–Fock–Slater wave functions [23] give an accurate repre-
sentation for the atomic shell structure, however the approximate nature of the
present approach does not warrant such a complicated procedure. In present pa-
per, we therefore used the TFDW density functional to determine the electronic
charge density.

To account for the shell structure of the atom within the TFDW formalism,
we followed the procedure given in Ref. [22]. The atomic electronic density, ρ, is
written as the sum of orbital densities, ρi:

ρ =
∑

ρi(r, ξi), (11)
where orbital densities are given by

ρi(r, ξi) = Nir
2ni−2e−2ξir. (12)

In Eq. (12), ni is the principal quantum number of orbital i, ξi is the
variational parameter and relevant normalizing constant Ni is defined from the
condition∫

ρi(r, ξi)d
3
r = wi, (13)

where wi is the population of the orbital i.
TFDW density functional is given by [21]:

E[ρ] = T [ρ] + Vne[ρ] + Vee[ρ], (14)
where T [ρ] is the kinetic energy, Vne[ρ] is the nuclear–electron attraction energy
and Vee[ρ] is the electron–electron repulsion energy. The first two terms of gradient
expansion of kinetic energy [21, 24] is

T [ρ] = T0[ρ] + λTw[ρ], (15)
where the free electron gas kinetic energy [10, 11] is

T0[ρ] =
3
10

(3π2)2/3

∫
ρ5/3dτ (16)

and the inhomogeneity correction [12] is

Tw[ρ] =
1
8

∫ ∇ρ · ∇ρ

ρ
dτ. (17)

The factor λ in Eq. (15) arises from the second-order correction to the
gradient expansion of the TF kinetic energy. Although different values of λ were
suggested by several authors [24, 25], we used only λ = 1/9 in the present paper.
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The nuclear–electron attraction energy in Eq. (14) is given by

Vne = −Z

∫
ρ

r
dτ, (18)

where Z is the nuclear charge. Besides, electron–electron repulsion energy consists
of two terms

Vee[ρ] =
1
2

∫
ρϕdτ + X[ρ]. (19)

The first term in Eq. (24) is classical Coulomb repulsion energy and last
term is the Dirac exchange-only energy [26] and it is given by

X[ρ] = −3
4
(3/π)1/3

∫
ρ4/3dτ. (20)

When the variational representation of the electron density, ρ(ζ1, . . . , ζn; r),
is used, Eq. (14) must satisfy the following conditions [21, 27]:

∂E

∂ζi
= 0 (i = 1, . . . n), (21)

∫
ρdτ = N, (22)

where ζi are the variational parameters and N is the total number of electrons in
the atom (for neutral atoms N = Z).

5. Results and discussion

In this study electronic stopping cross-sections of Al2O3, SiO2 and CO2 were
calculated for Be, B, O, and Si ions in the high energy region of stopping. The
obtained results were compared with the other results in the literature.

Fig. 1. Electronic stopping power of Al2O3 for Be ions. The solid line (—) is a plot of

stopping powers from Thomas–Fermi–Dirac–Weizsäcker; the dashed line, (- - -) stopping

powers from Thomas–Fermi model with Ziegler–Biersack–Littmark’s screening function;

the dotted line (· · ·) from Thomas–Fermi model with Tietz’s screening function; the

dashed-dotted-dotted line (-··-) results calculated by SRIM 2003 computer code [29] and

the symbols (×) indicate stopping power values from Paul and Schinner [28].
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Fig. 2. Electronic stopping power of Al2O3 for B ions. Symbols and lines are the same

as in Fig. 1.

Fig. 3. Electronic stopping power of Al2O3 for O ions. Symbols and lines are the same

as in Fig. 1.

In present paper, only stopping power results of Al2O3 are shown in Figs. 1–4
for Be, B, O, and Si ions. In all figures, solid line, dashed line, dotted line represents
TFDW results, TF-ZBL, and TF-Tietz results, respectively. TF-ZBL means the
calculation by using TF electron density with Ziegler et al.’s screening function [8]
while TF-Tietz means the calculation by using TF electron density with Tietz’s
screening function [7].

As shown from the figures, stopping power results agree with each other at
high energies. On the other hand, for energies below the Bethe region deviations
are high, which is expected because our calculation is based on the Bethe theory.
The reason for these deviations can be explained as in the following: the Bethe
theory of the stopping power is in fact valid at high energies, but many scientists
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Fig. 4. Electronic stopping power of Al2O3 for Si ions. Symbols and lines are the same

as in Fig. 1.

TABLE

Percentage deviations of electronic stopping power.

TFDW TF-Ziegler TF-Tietz

Be→CO2 3.4 10.2 8.3

B→CO2 3.3 10 7.8

O→CO2 6.4 6.1 5

Si→CO2 11.6 6 5

Be→SiO2 6.1 7.9 7.2

B→SiO2 7 6.8 7.2

O→SiO2 8.3 9.6 9.1

Si→SiO2 7.5 4.6 3.2

(2.5–20 MeV/nucl.)

Be→Al2O3 5.1 3.8 2.9

B→Al2O3 6.8 4.2 3.1

O→Al2O3 10.2 4.8 4.1

Si→Al2O3 20.2 6.2 6.6

have tried to develop this theory to give better results at below this region. The
present formalism is based on the Bethe theory, but we modified this theory by
considering velocity-dependent number of electrons bound to projectile and active
electrons in target. Therefore, we can say that we developed methods of Cabrera-
-Trujillo and Bethe further to be valid at low energies. Moreover, in our previous
papers [6, 9] we showed that our calculation method agreed with other theoretical
and empirical results better than Bethe’s results at energies below high energy
region.
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Mean deviations in energies between 1–20 MeV/nucl from Paul and Schin-
ner’s results [28] are given in Table for all calculated projectile–target system ex-
cept SiO2 targets. For SiO2 targets, mean deviations were calculated with respect
to SRIM 2003 [29] results at the energy range 2.5–20 MeV/nucl.

6. Conclusions

¿From Table, we see that TFDW results are better than TF results in light
(with respect to number of electrons in the system) projectile–target systems while
TF results are better for heavy systems. This difference comes from the fact that
shell structure of atom, the TFDW model, takes into account the exchange term
between electrons which is not taken into account in TF model, and the gradient
correction term in kinetic energy. Therefore the electronic charge density obtained
by using TFDW model, is real more than that of TF model. However, it is not
easy to account for orbital structure of atom especially heavy atoms. Therefore,
it is easy to describe heavy atoms with statistical methods like Thomas–Fermi.

The obtained results by using TF model are more reliable for heavy systems
because of its statistical nature [6]. In this paper, the stopping power for light sys-
tems has been calculated by using TFDW model with electron density describing
shell structure of atom. On the other hand, calculations show that it is more con-
venient to use TF model for heavy systems. Although Bragg’s rule is inadequate
for light ions and energies outside the Bethe region of stopping, stopping powers
of light systems outside the Bethe region were calculated reasonably well.
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