
Vol. 114 (2008) ACTA PHYSICA POLONICA A No. 4

Cole–Cole Plots for Linear

and Nonlinear Dielectric Relaxation

in Solutions of Rigid, Highly Dipolar,

Symmetric-Top Molecules

in Spherical Solvents

W. Alexiewicz∗ and K. Grygiel

Nonlinear Optics Division, Institute of Physics
Adam Mickiewicz University

Umultowska 85, 61-614 Poznań, Poland
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The graphical analysis of the influence of the rotational diffusion ten-

sor anisotropy and the orientation of the permanent dipole moment on

the linear and nonlinear dielectric relaxation is shown. The solution of

Smoluchowski–Debye rotational diffusion equation for rigid, and noninter-

acting polar, symmetric-top molecules, in the “weak molecular reorientation

approximation”, was used. In order to highlight the influence of the sym-

metric shape of molecule, in comparison with classical, spherical-top Smolu-

chowski rotational diffusion, we present sets of Argand-type plots and three-

-dimensional Cole–Cole diagrams for linear and nonlinear electric suscep-

tibilities. The results indicate that, in describing the nonlinear dielectric

relaxation, the simplest spherical-top rotational diffusion model may be a

sufficient approximation in some special cases only.

PACS numbers: 05.40.Jc, 77.22.−d, 77.22.Gm

1. Introduction

The aim of this paper is to give graphical analysis of the influence of the
symmetric-top shape of the rigid, highly dipolar molecule and the orientation
of its permanent dipole moment on the phenomena of the linear and nonlinear
dielectric relaxations in dilute solutions, in comparison with these efects for the

∗corresponding author; e-mail: walex@amu.edu.pl

(687)



688 W. Alexiewicz, K. Grygiel

spherical-top molecules. The starting point are the results of our paper [1], being
a continuation of the previous theories of Kielich and co-workers [2–7]. We present
a set of the Cole–Cole plots for the dielectric relaxation based on an approximate
solution of the classical Smoluchowski–Debye rotational diffusion equation.

The Smoluchowski equation for rotational diffusion of molecules plays the
important role in linear relaxation phenomena [8], in the induced dynamic optical
birefringence [2, 9–13], and in nonlinear — the Langevin type relaxation [2, 3,
14, 15]. An extensive review of the actual progress in the wide theory of rotational
diffusion, including the introduction to the models of “anomalous rotational diffu-
sion” — the fractional diffusion extension of the classical Smoluchowski equation
— was given by Coffey [16].

The experiments on nonlinear dielectric relaxation effect in liquids have been
performed for many years in Leuven and Poznań by De Smet, Hellemans, Jadżyn,
Kȩdziora and co-workers [17–21].

Section 2 presents our previous result [1] for the linear and nonlinear —
Langevin type electric susceptibilities, which make the basis for the detailed graph-
ical analysis. In Sect. 3 we discuss the changes following from the symmetric shape
of molecule in comparison with the model of its spherical shape. These changes
may be of importance in many cases, so the spherical-top rotational diffusion model
may be a good approximation in some special cases.

2. Linear and nonlinear electric susceptibilities

We consider the isotropic dielectric liquid composed of noninteracting, rigid
and symmetric-top molecules with the permanent dipole moment equal to µ, acted
on by a strong external dc bias electric field EZ superimposed on a weak harmonic
electric field Eω cosωt with the frequency ω:

EZ(t) = EZ + Eω cos ωt. (1)
The electric polarization induced in the medium 〈PZ(t)〉 may be written as

a sum

〈PZ(t)〉 = 〈P (1)
Z (t)〉+ 〈P (3)

Z (t)〉 (2)

of the linear 〈P (1)
Z (t)〉 and nonlinear 〈P (3)

Z (t)〉 parts. It is well known that

〈P (1)
Z (t)〉 = ε0χ

∗(−ω;ω)Eω, (3)
where ε0 denotes the electric permittivity of the vacuum and χ∗(−ω;ω) is the
complex, linear susceptibility of the liquids. The third-order electric polarization
depends on the complex nonlinear susceptibility of the liquid χ∗(−ω;ω, 0, 0)

〈P (3)
Z (t)〉 = ε0χ

∗(−ω;ω, 0, 0)EωE2
Z . (4)

Both these susceptibilities may be written in familiar form, as a sum of the real
and imaginary parts

χ∗(−ω; ω) = χ′(−ω; ω)− iχ′′(−ω; ω) (5)
and
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χ∗(−ω; ω, 0, 0) = χ′(−ω;ω, 0, 0)− iχ′′(−ω; ω, 0, 0), (6)
where i2 = −1. The dependence of susceptibilities (5), (6) of molecular liquids
on the frequency, shape of the molecules and orientation of the permanent dipole
moment is the central point of the linear and nonlinear relaxation experimental
and theoretical investigation.

From the Smoluchowski–Debye rotational diffusion of noninteracting, rigid
and symmetric-top molecules, in “the weak molecular reorientation approxima-
tion”, the following result has been obtained [1, 6, 9, 10]:

3kTε0χ
′(−ω; ω) = ρµ2C ′1(−ω; ω),

3kTε0χ
′′(−ω; ω) = ρµ2C ′′1 (−ω; ω), (7)

where ρ denotes the density of the liquid, k — the Boltzmann constant and T —
Kelvin temperature. We see that the real and imaginary parts of the susceptibility
χ∗(−ω; ω), depending obviously on the electric field frequency ω, are functions of
the parameter of the rotational diffusion tensor anisotropy

ξ = Dxx/Dzz

and the polar angle Θ between the permanent dipole moment and the symmetry
axis of the molecule. From the Smoluchowski–Debye equation of rotational diffu-
sion of the symmetric-top molecule, we have [1]:

C ′1(−ω; ω) = s11(ω, ξ) sin2 Θ + s10(ω) cos2 Θ (8)
and

C ′′1 (−ω; ω) = −ωτ11s11(ω, ξ) sin2 Θ − ωτ10s10(ω) cos2 Θ , (9)
where

slm(ω, ξ) = (1 + ω2τ2
lm)−1 (10)

are well-known Debye–Kielich relaxational functions depending on the molecular
relaxations times of the symmetric-top molecules

τlm = D−1
zz [l(l + 1)−m2(1− ξ)]−1. (11)

These functions and the relaxation times are independent of ξ when m = 0. We see,
Eqs. (8), (9), that for the symmetric-top molecules, the linear dielectric relaxation
depends in fact on the superposition of two molecular rotations, characterized by
two relaxation times τ10 and τ11, respectively around the long and short molecular
axis. Similarly, for the nonlinear dielectric relaxation we have

45k3T 3χ′(−ω;ω, 0, 0) = ρµ4C ′2(−ω; ω, 0, 0),

45k3T 3χ′′(−ω; ω, 0, 0) = ρµ4C ′′2 (−ω; ω, 0, 0), (12)
the result is valid only in the case of “weak molecular reorientation approxima-
tion” and in the absence of polarizability of the molecules. The nonlinear electrical
susceptibilities of the molecule in Eqs. (12) are in this case equal to [1]:

C ′2(−ω; ω, 0, 0) = axxx
11 (ω, ξ) sin4 Θ
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+[axxz
10 (ω, ξ) + axzz

11 (ω, ξ)] sin2 Θ cos2 Θ + azzz
10 (ω) cos4 Θ (13)

and

C ′′2 (−ω; ω, 0, 0) = bxxx
11 (ω, ξ) sin4 Θ

+[bxxz
10 (ω, ξ) + bxzz

11 (ω, ξ)] sin2 Θ cos2 Θ + bzzz
10 (ω) cos4 Θ . (14)

The explicit formulae for the dispersion — azzz
10 (ω), axxz

10 (ω, ξ), axzz
11 (ω, ξ),

azzz
10 (ω) and absorption — azzz

10 (ω), bxxz
10 (ω, ξ), bxzz

11 (ω, ξ) and bzzz
10 (ω) functions

were derived in [1], they are simply some superpositions of the Debye–Kielich
factors given by Eq. (11). We see that in the nonlinear relaxation, the dispersion
and absorption phenomena, Eqs. (13), (14), can be interpreted as a result of the
superpositions of three independent molecular motions:

— the diffusional rotation around the long molecular axis, terms with azzz
10 (ω)

or bzzz
10 (ω), independent of the parameter ξ, and

— the rotation around the short axis, terms with axxx
11 (ω, ξ) or bxxx

11 (ω, ξ),
respectively,

— and the rotation connected with third term of the “mixed” rotational mo-
tion, with the functions axxz

10 (ω, ξ) , axzz
11 (ω, ξ) and bxxz

10 (ω, ξ) , bxzz
11 (ω, ξ) multiplied

by sin2 Θ cos2 Θ .

3. Influence of symmetric shape and dipole moment orientation
of the molecule on linear and nonlinear Cole–Cole plots

It is very convenient to analyze the frequency dependence of the rotational
relaxation in liquids with the familiar Cole–Cole plots [4] of the imaginary part of
the electric susceptibility as a function of its real part. The Cole–Cole plots for the
linear susceptibilities C ′1(−ω; ω) and C ′′1 (−ω; ω) given by Eqs. (7), on the angle
Θ between the permanent dipole moment and the symmetry axis of the molecule,
for some values of the parameter of the rotational diffusion anisotropy ξ, are given
in Figs. 1. Although the linear relaxation does not clearly depend, for ξ < 1, on
the anisotropy of the rotational diffusion tensor, in the opposite case, for ξ > 1,
distinct changes are seen. The “anisotropic term”, with the relaxational function
s11(ω, ξ), gives the maximal contribution when Θ = 90◦. For dipole moment lying
along the molecular z-axis, Θ = 0, and the Smoluchowski–Debye equation for the
spherical-top becomes a very good approximation.

The Cole–Cole plots for the normalized linear susceptibilities C ′1(−ω;ω) and
C ′′1 (−ω; ω) given by Eqs. (7), and projected onto the plane (Θ , C ′1(−ω;ω)), for
selected values of the parameter of the rotational diffusion anisotropy ξ, are given
in Fig. 2. We see that for increasing values of ξ, distinct changes from the classical
Cole–Cole semicircle appear if Θ = 90◦.

The Cole–Cole plots for the susceptibilities C
′
1(−ω; ω) and C ′′1 (−ω; ω), given

by Eqs. (7), on the parameter of the rotational diffusion anisotropy ξ, for some
values of the angle Θ between the permanent dipole moment and the symmetry
axis of the molecule, are given in Fig. 3.
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Fig. 1. Dependence of the linear Cole–Cole plots, resulting from Eqs. (7), of the angle

Θ between permanent dipole moment and the symmetry axis of the molecule, for some

values of the parameter of the rotational diffusion anisotropy ξ. The angle Θ is changing

from 0 to π/2.
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Fig. 2. Cole–Cole plots for the linear susceptibilities C′′1 (C′1), given by Eqs. (7), pro-

jected on the plane (Θ , C′1(−ω; ω)) for some values of the parameter of the rotational

diffusion anisotropy ξ.

Fig. 3. Dependence of Cole–Cole plots for the linear susceptibilities C′′1 (C′1), given by

Eqs. (7), on the parameter of the rotational diffusion anisotropy ξ, for some values of

the angle Θ between permanent dipole moment and the symmetry axis of the molecule.
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Fig. 4. Dependence of the nonlinear Cole–Cole plots, resulting from Eqs. (12)–(14), of

the angle Θ between permanent dipole moment and the symmetry axis of the molecule

for some values of the parameter of the rotational diffusion anisotropy ξ.
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Fig. 5. Cole–Cole plots for the nonlinear susceptibilities C′′2 (C′2), given by Eqs. (12)–

(14), projected on the plane (Θ , C′2(−ω; ω, 0, 0)) for some values of the parameter ξ.

Fig. 6. Dependence of Cole–Cole plots for the nonlinear susceptibilities C′′2 (C′2), given

by Eqs. (12)–(14), on the parameter of the rotational diffusion anisotropy ξ for some

values of the angle Θ between permanent dipole moment and the symmetry axis of the

molecule.
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Fig. 7. Cole–Cole plots for the normalized linear electric susceptibilities C′1(−ω; ω) and

C′′1 (ω; ω) for selected values of the parameter ξ and for different angles Θ .

Fig. 8. Cole–Cole plots for the normalized nonlinear electric susceptibilities

C′2(−ω; ω, 0, 0) and C′′2 (−ω; ω, 0, 0) for rod-like molecules (ξ = 0.1; 0.5; 0.7) and for

spherical-top molecule, ξ = 1, for different values of the parameter ξ and for differ-

ent Θ .
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Fig. 9. Cole–Cole plots for the normalized nonlinear electric susceptibilities

C′2(−ω; ω, 0, 0) and C′′2 (−ω; ω, 0, 0) for disk-like molecules (ξ > 1) for selected values

of the parameter ξ and for different Θ .

Figure 4 presents the Cole–Cole plots for the normalized nonlinear suscepti-
bilities C ′2(−ω; ω, 0, 0) and C ′′2 (−ω; ω, 0, 0) given by Eqs. (12)–(14), versus angle Θ
for some values of the parameter of the rotational diffusion anisotropy ξ, whereas
Fig. 5 shows the projections of the Cole–Cole plots C ′′2 (C ′2) onto the plane (C ′,Θ),
for selected values of ξ.

In the case of nonlinear relaxation, according to Eqs. (13), (14), the result-
ing formulae are more complicated, of course. If the dipole moment lies in the z

molecular direction, Θ = 0, and only the terms with azzz
10 (ω), bzzz

10 (ω), indepen-
dent of ξ, contribute to the Langevin relaxation. Therefore, similarly as in the
linear case, the spherical Smoluchowski–Debye equation is a good approximation.
When Θ = 90◦ this term does not contribute to the susceptibilities, which now
depend on the terms with axxx

11 (ω, ξ), bxxx
11 (ω, ξ), only. For the other values of Θ

the “mixed terms”, with axxz
10 (ω, ξ), axzz

11 (ω, ξ), bxxz
10 (ω, ξ), bxzz

11 (ω, ξ), contribute
and the influence of anisotropy of the diffusion tensor on the nonlinear Cole–Cole
diagrams is important.
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The next Fig. 6 shows the Cole–Cole plots of the nonlinear susceptibilities
C ′′2 (−ω; ω, 0, 0) and C ′2(−ω;ω, 0, 0) given by Eqs. (12)–(14) versus the parameter
ξ, for selected values of the angle Θ between the permanent dipole moment and
the symmetry axis of the molecule, respectively, equal: π/8, π/4, 3π/8.

Two-dimensional Cole–Cole plots for the normalized linear electric suscepti-
bilities C ′1(ω, ξ,Θ) and C ′′1 (ω, ξ,Θ), given by Eqs. (7), are presented in Fig. 7, for
selected values of the parameter ξ and for different polar angles Θ .

Finally the Cole–Cole plots for the normalized nonlinear electric suscepti-
bilities C ′2(−ω; ω, 0, 0) and C ′′2 (−ω;ω, 0, 0), given by Eqs. (13), (14), are given in
Fig. 8:

— for rod-like molecules (ξ = 0.1; 0.5; 0.7) and for spherical-top molecule,
ξ = 1, for different ξ and for different values of the polar angle Θ ,

— and in Fig. 9, for disk-like molecules (ξ > 1), for selected ξ and Θ .
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