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Saturation in Dilute Solution

of Dipolar, Symmetric-Top Molecules

in Spherical Solvents

W. Alexiewicz∗ and K. Grygiel

Nonlinear Optics Division, Institute of Physics
Adam Mickiewicz University

Umultowska 85, 61-614 Poznań, Poland
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Assuming the low molecular reorientation approximation, the formulae

for the third-order electric polarization induced in liquids composed of rigid

noninteracting dipolar, symmetric-top molecules in spherical solvents were

derived. Our medium is acted on by a strong external dc bias electric field

superimposed on a weak ac electric field, and the classical Smoluchowski–

Debye equation for rotational diffusion of the symmetric-top molecules is

applied. In order to highlight the influence of the anisotropy of rotational

diffusion tensor components and the orientation of permanent dipole moment

of the molecule on the complex linear and nonlinear electric susceptibilities,

we present three-dimensional plots of the linear and nonlinear dispersion and

absorption spectra, for different values of the frequency of ac electric field.

PACS numbers: 05.40.Jc, 77.22.–d, 77.22.Gm

1. Introduction

Linear and nonlinear dielectric relaxation phenomena in molecular liquids,
although discovered many years ago, are still the basis for wide experimental and
theoretical studies. The Smoluchowski–Debye model of rotational diffusion of
noninteracting, spherical-top molecules in solutions has been successfully applied
in description of linear dielectric relaxation [1–3], the optical Kerr effect [4–6], the
light scattering [7, 8], various phenomena connected with the third-order electric
polarization in liquids [9–11] and especially the nonlinear dielectric effect (NDE)
measured at the frequency of the probe field [12–18]. This last effect, named the
Langevin saturation, is characterized by a negative contribution to the nonlinear
electric susceptibility χ(−ω; ω, 0, 0), due to a decrease in the potential energy of
the polar molecules in dc electric field.
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The Smoluchowski–Debye rotational relaxation theory has been extended to
non-linear effects by Kielich and his co-workers [9–11], and applied to describe
the dispersional and absorptional behavior of the third-order electric polarization
induced in liquids consisting of the spherical-top molecule by external reorient-
ing electric fields. The nonlinear-Langevin type relaxation was succesfully mea-
sured, as the nonlinear dielectric effect on the frequency of the probe field, by
De Smet, Hellemans, Jadżyn, Kȩdziora and co-workers in many papers [14–18].
The Smoluchowski–Debye equation for the rotational diffusion of symmetric-top
molecules was used by Morita and Watanabe in description of optical birefringence
[19, 20], by Dejardin in evaluation of the nonlinear dielectric response [21], and
also by one of us [22]. An elegant solution of the Smoluchowski–Debye equation of
asymmetric-top molecules was given by Kalmykov [23]. An excellent and extensive
review of dielectric relaxation phenomena in liquids was given by Coffey [24].

The anomalous rotational diffusion model, given recently by Coffey,
Kalmykov, Dejardin, Jadżyn and co-workers [25–27], permits, in contrast to the
Smoluchowski–Debye approach, investigation of molecular dynamics of the non-
-Markovian type, and opens wide applications in investigation of dynamic phe-
nomena in liquids. This “anomalous rotational diffusion approach” is based on
the non-Markovian equation with non-integer time differential operator and, as an
elegant extension both of the Smoluchowski–Debye model and the Cole–Davidson
results, includes these two types of relaxation [27]. These modern theories are
in good agreement with the ac Kerr effect response experiments, performed on a
dilute solution of poly(3-hexylthiophene), by Schimomura and co-workers [28, 25].

It is our aim to present graphical analysis of the linear and nonlinear dielec-
tric relaxation of rigid, non-interacting symmetric-top dipolar molecules in spheri-
cal solvents, the phenomena which are strongly dependent both on the anisotropy
of rotational diffusion tensor and on the angle between the molecular dipole and
the symmetry axis. In Sect. 2 we derive the formula for the third-order electric
polarization induced in the liquids by a strong external reorienting field, which
consists of the sum of three terms connected with the “cubic” relaxation functions
Axxx

11 (t), Azzz
10 (t), and Axxz

10 (t)+Axzz
11 (t). These functions depend on the parameter

of the rotational diffusion anisotropy and on the shape of electric fields and are
given for the nonlinear electric susceptibility in Langevin saturation, χ(−ω; ω, 0, 0),
in Sect. 3. In Sect. 4 the linear dielectric relaxation is briefly summarized and in
Sect. 5 we discuss our results for nonlinear relaxation.

Section 6 contains all the dispersion and absorption graphs. Our results
indicate that the spherical-top approximation may be used only in special cases,
especially in the nonlinear case, in which the symmetric shape of the molecule
cannot be neglected.

2. Third-order electric polarization induced in the dielectric medium
We consider a dielectric system of the volume V composed of a great number

N of dipolar molecules, with the permanent dipole moment of µ. On neglecting the
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induced molecular polarizabilities and molecular interactions, the Z component of
the total dipole moment MZ [EZ(t)] of the system, induced by the time-variable
external electric field EZ(t) = EZg(t), is equal to

MZ [EZ(t)]

= N

√
2π

3

[
iµx(Y11 + Y1−1) + µy(Y11 − Y1−1)−

√
2µzY10

]
g(t), (1)

where Ylm ≡ Ylm(ϑ, ϕ) are the spherical harmonic functions, depending on the
two angles between EZ(t) and the z axis of the molecular coordinate set: the
polar ϑ and the azimuthal ϕ ones, i2 = −1, and the function g(t) describes the
shape of the electric field. The components of the permanent dipole moment are:
µz = µ cosΘ , µx = µ cosΦ sinΘ , µy = µ sinΦ sinΘ , where Θ ,Φ are the angles
between µ and the z axis of the molecular coordinate set.

The electric polarization 〈PZ(t)〉 induced in the dielectric is given by the
ensemble average

〈PZ(t)〉 =
N

4πV

2π∫

0

∫ π

0

MZ [EZ(t)]f [ϑ, ϕ; EZ(t)] sinϑdϑdϕ, (2)

where f [ϑ, ϕ; EZ(t)] denotes the probability distribution function describing the
rotational diffusion of a molecule.

We assume that the time evolution of the distribution function f ≡
f [ϑ, ϕ; EZ(t)] is governed by the Smoluchowski–Debye rotational diffusion equa-
tion for the symmetric-top molecule [19, 20]:

D−1
zz

∂f

∂t
+ ξL̂2f + (1− ξ)L̂2

zf =
1

2kT

[
(ξ − 1)L̂2

z(uf)− ξL̂2(uf)

+(ξ − 1)fL̂2
zu− ξfL̂2u− (ξ − 1)uL̂2

zf + ξuL̂2f
]
, (3)

where L̂ and L̂Z are the components of the quantum mechanical angular momen-
tum operator but with ~ = 1 and u ≡ u[ϑ, ϕ;EZ(t)] denotes the change in the
potential energy of the molecule in an external electric field

u[ϑ, ϕ;EZ(t)] = kT [ipx(Y11 + Y1−1) + py(Y11 − Y1−1)− pzY10]g(t), (4)
where the dimensionless parameters of reorientation of the permanent dipole mo-
ment components are

pα =

√
2π

3
µαEZ

kT
, pz = 2

√
π

3
µzEZ

kT
, (5)

k is the Boltzmann constant, T — absolute temperature and α = x, y. In the
Smoluchowski Eq. (3) the dimensionless parameter of the rotational diffusion ten-
sor anisotropy ξ of symmetric-top molecule — Dxx = Dyy 6= Dzz — is

ξ =
Dxx

Dzz
, (6)

where Dxx, Dzz are the rotational diffusion constants around the molecular x and
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z axis, respectively. In the particular case of the spherical-top molecule ξ = 1
and Eq. (3) becomes the well-known Smoluchowski–Debye equation depending on
the polar angle ϑ only [9–11], which is fundamental for the theories of linear and
nonlinear dielectric relaxation [6, 7], the dynamic Kerr effect [5], as well as many
interesting magnetic relaxation phenomena [6].

The approximate solution of Eq. (3), if px, py, pz ¿ 1, known as “the low
molecular reorientation”, is given in [10, 22].

If the intensity of the external field EZ(t) is sufficiently high, it may induce in
the dielectric, in addition to the linear polarization 〈P (1)

Z (t)〉, proportional to EZ :

〈P (1)
Z (t)〉 = [Ax

11(t) sin2 Θ + Az
10(t) cos2 Θ ]

ρµ2EZ

3kT
, (7)

the third-order electric polarization, equal to [9, 10]:

〈P (3)
Z (t)〉 = −{Axxx

11 (t) sin4 Θ + Azzz
10 (t) cos4 Θ

+[Axxz
10 (t) + Axzz

11 (t)] sin2 Θ cos2 Θ} ρµ4E3
Z

45k3T 3
. (8)

For the “ideal” symmetric-top molecules, i.e. when Dxx = Dyy 6= Dzz and
µx = µy 6= µz, too, or simply Θ = π/4, Eqs. (7), (8) are reduced to

〈P (1)
Z (t)〉 = [Ax

11(t) + Az
10(t)]

ρµ2EZ

6kT
(9)

and

〈P (3)
Z (t)〉 = −[Axxx

11 (t) + Axxz
10 (t) + Axzz

11 (t) + Azzz
10 (t)]

ρµ4E3
Z

180k3T 3
. (10)

The linear Ax
11(t), A

z
10(t) and “cubic” Axxx

11 (t), Azzz
10 (t), Axxz

10 (t), Axzz
11 (t) re-

laxational functions, depending on the shape of the external reorienting electric
fields g(t), parameter ξ of the rotational tensor anisotropy and the rotational re-
laxation times of the symmetric-top molecule τlm, can be found from the set of
simple linear differential equations [9, 22], resulting from the Smoluchowski–Debye
Eq. (3).

Therefore linear relaxation consists, Eq. (7), of two terms. It is seen from
Eq. (8) that nonlinear Langevin relaxation is a superposition of three independent
terms. Our treatment may be extended to the case of the polarizable molecules,
taking into account the additional term in the potential energy u[ϑ, ϕ; EZ(t)] in
Eq. (4).

3. The rotational diffusion functions of symmetric-top molecule
in the presence of constant and harmonic electric fields

Let us consider an external reorienting electric field EZ(t) as a sum of con-
stant and harmonic fields

g(t) = 1 +
1
2
λ(e−iωt + eiωt), λ =

Eω

EZ
(11)

switching on at the time t = 0. Here ω denotes the frequency of the electric field
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Eω cos ωt. The extension of the Kielich method [9–11, 22] to the symmetric-top
molecules gives the steady-state result

2Ax
11(t) = 1 + λRω

11e
−iωt + c.c., 2Az

10(t) = 1 + λRω
10e

−iωt + c.c. (12)
in which the complex Debye–Kielich factors Rlm(nω) ≡ Rnω

lm , describing the dis-
persion and absorption of the medium are defined as

Rnω
lm = (1− inωτlm)−1. (13)

Here the rotational relaxation times of the symmetric-top molecule τlm are
equal to

τlm = [l(l + 1)Dzz −m2(Dzz −Dxx)]−1 (14)
and the abbreviation “c.c.” denotes the complex conjugate term. In this paper we
neglect transient effects in the rise in time of polarization and describe here only
the steady-state polarization, attained by the dielectric medium after a sufficiently
long time t À τ10. In Fig. 1 we plot the ratios

τ11

τ10
=

2
1 + ξ

,
τ21

τ20
=

6
5 + ξ

,

and
τ22

τ20
=

3
1 + 2ξ

versus the parameter of anisotropy of the rotational diffusion components ξ. We
see that for ξ < 1 all these ratios are greater than 1 and for ξ → ∞ these ratios
decrease to zero.

Fig. 1. Relaxation times versus parameters anisotropy ξ.

The cubic reorientational functions Aααα
lm (t) for the symmetric-top molecules

are of more complicated form and may be obtained from the set of linear differential
equations, given in [22]. We have this result
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2Azzz
10 (t) = 1 + λRω

10(1 + Rω
20 + Rω

10R
ω
20)e

−iωt

+
1
2
λ2(Rω

10 + Rω
20 + Rω

10R
ω
20)

+
1
2
λ2(Rω

10R
2ω
10 R2ω

20 + Rω
10R

2ω
10 Rω

20 + R2ω
10 Rω

20)e
−i2ωt

+
1
4
λ3Rω

10(R
ω
10 + R−ω

10 + R2ω
20 )e−iωt

+
1
4
λ3Rω

10R
3ω
10 R2ω

20 e−i3ωt + c.c. (15)

The function Azzz
10 (t) is the one that determines the rotational relaxation

of spherical-top molecules with µz 6= 0, µx = µy = 0, too, and depends on two
relaxation times

τ10 = (2Dzz)−1, τ20 = (6Dzz)−1. (16)
Moreover we obtain

4(1 + ξ)[Axxx
11 (t)− 1] = λRω

11{1 + ξ + (1 + Rω
11)[3Rω

22 + (2ξ − 1)Rω
20]}e−iωt

+
1
2
λ2{2(1 + ξ)Rω

11R
ω
11 + (1 + Rω

11)[3Rω
22 + (2ξ − 1)Rω

20]}

+
1
2
λ2{3Rω

11R
2ω
22 + (2ξ − 1)R2ω

20 + (1 + Rω
11)R

2ω
11 [3Rω

22 + (2ξ − 1)Rω
20]}e−i2ωt

+
1
4
λ3Rω

11[3Rω
11R

2ω
22 + 2(1− ξ)(2 + R2ω

20 )]e−iωt

+
1
4
λ3R3ω

11 [3Rω
11R

2ω
22 + 2(ξ − 1)R2ω

20 ]e−i3ωt + c.c. (17)

and

2Axxz
10 (t) = 1 +

1
4
λ[2− (1 + Rω

11)R
ω
20 + 3(1 + aRω

10 + bRω
11)R

ω
21]e

−iωt

+
1
8
λ2[3(aRω

10 + bRω
11)(1 + Rω

21) + 3Rω
21 −Rω

11 − (1 + Rω
11)R

ω
20]

+
1
8
λ2[6(1 + aRω

10 + bRω
21 − 2Rω

11R
2ω
20 −Rω

20)R
2ω
10 e−i2ωt]

+
1
16

λ3{Rω
10[3(aRω

10 + bRω
11)(1 + Rω

21)−Rω
11(1 + R2ω

20 )]

+R−ω
10 [3(aR−ω

10 + bR−ω
11 )−R−ω

11 ]}e−iωt

+
1
16

λ3[3(aRω
10 + bRω

11)R
2ω
21 −Rω

11R
2ω
20 ]R3ω

10 e−i3ωt + c.c., (18)

where the coefficients a, b are equal to

a =
1 + 2ξ

1 + 5ξ
, b =

3ξ

1 + 5ξ
(19)

and finally
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(1 + ξ)[Axzz
11 (t)− 1] =

1
2
λ[(1 + Rω

11)R
ω
20 − 2ξ(1 + Rω

10)R
ω
20

+(1 + ξ)R−ω
11 + 3ξ(1 + aRω

10 + bRω
11)R

ω
21]e

−iωt

+
1
4
λ2[Rω

11 − 2ξRω
10 + 3ξ(aR10 + bRω

11) + (1 + Rω
11)R

ω
20

−2ξ(1 + Rω
10)R

ω
20 + 3ξ(1 + aRω

10 + bRω
11R

ω
21)]

+
1
4
λ2[(1 + Rω

11)R
ω
20 − 2ξRω

20(1 + Rω
10R

ω
20) + 3ξ(1 + aRω

10 + bRω
11)R

ω
21

+Rω
11R

2ω
20 − 2ξRω

10R
2ω
20 + 3ξ(aRω

10 + bRω
11)R

2ω
21 ]R2ω

21 e−i2ωt

+
1
8
λ3[Rω

11 + R−ω
11 − 2ξ(Rω

10 + R−ω
10 ) + 3ξa(Rω

10 + R−ω
10 ) + 3ξb(Rω

11 + R−ω
11 )

+Rω
11R

2ω
20 − 2ξRω

10R
2ω
20 + 3ξ(aR10 + bRω

11)R
2ω
21 ]Rω

11e
−iωt

+
1
8
λ3[Rω

11R
2ω
20 − 2ξRω

10R
2ω
20 + 3ξ(aRω

10 + bRω
11)R

2ω
21 ]R3ω

11 e−i3ωt + c.c. (20)

Equations (15)–(20) represent the essential result of our theory and describe
the steady-state of the third-order electric polarization induced in the dielectric
medium by a sum of the constant and the harmonic fields, Eq. (11). The dis-
persion and absorption depend on the symmetric-top molecule orientational relax-
ation times τ10, τ11, τ20, τ21, τ22 as well as on the complex, nonlinear Debye–Kielich
factors Rnω

lm given by Eq. (13). It is seen from Eqs. (7),(8),(15)–(20) that the
anisotropy of the rotational diffusion components ξ may have great significance in
the theory of nonlinear dielectric relaxation.

The time independent component of the third-ordered electric polarization
Eq. (8) is connected with the term proportional to λ0, and may be obtained, in the
case of spherical molecules with µx = µy = 0, µz 6= 0, from the series expansion of
the well-known Langevin function L(y), where

〈PZ(EZ)〉 = ρ

(
coth y − 1

y

)
= ρL(y) ∼= ρ

(
y

3
− y3

45
+ . . .

)
,

y =
µzEZ

kT
. (21)

We see that the terms in Eqs. (12),(15)–(20) proportional to λ change with
the fundamental frequency ω. These components of polarization (8) are measured
in the NDE [14–16] firstly observed in 1936 as “the static positive NDE” in ni-
trobenzene solutions by Piekara [12]. These studies have soon a long history and
are quoted in some monographic papers [7, 8, 13].

The terms proportional to λ2 in Eqs. (12), (15)–(20) split into two compo-
nents — the first, time-independent, and the second, changing with the double
frequency 2ω, which describes the generation of the second harmonic polarization



674 W. Alexiewicz, K. Grygiel

in the presence of a strong dc electric field. Various third-order electric polarization
phenomena for the spherical-top molecules were discussed in [9–11].

4. Linear dielectric relaxation of non-interacting, rigid, dipolar
and symmetric-top molecules

The external electric field Eq. (11) induces, according to Eq. (9) the first-
-order polarization 〈P (1)(E)〉, which may be written as a sum of two components

〈P (1)
Z [E(t)]〉 = 〈P (1)

Z (EZ)〉+ 〈P (1)
Z [Eω(t)]〉, (22)

the time-independent polarization

〈P (1)
Z (EZ)〉 =

ρµ2EZ

3kT
(23)

and a harmonic polarization, changing with the fundamental frequency ω, which,
according to Eqs. (7),(12) may be written in the form

〈P (1)
Z [Eω(t)]〉

= [rω
11 cos(ωt− ψω

11) sin2 Θ + rω
10 cos(ωt− ψω

10) cos2 Θ ]
ρµ2Eω

3kT
. (24)

This harmonic term depends on the real dispersional functions

rlm(nω) ≡ rnω
lm = [1 + (nωτlm)2]−

1
2 (25)

and the phase shift angles

cosψnω
lm = rnω

lm , (26)

sinψnω
lm = nωτlmrnω

lm (27)
as well as on the relaxation times τ10, τ11.

It is worth noting that Eq. (22) is a special case of the old Perrin formula [2]
for linear electric polarization of the dielectric medium consisting of noninteracting
rigid, dipolar and asymmetric-top molecules in a cosine electric field

〈P (1)
Z (t)〉 =

ρEω

3kT

∑
α=x,y,z

µ2
αeiωt

1 + iωτα
. (28)

Here τα are the rotational relaxation times of the asymmetric-top molecule
around its α-axis, respectively. This result was extended for the interesting
case of asymmetric-top molecules with the rotating dipole groups by Budo and
co-workers [3].

The harmonic component (22) of the linear polarization may be written as

〈P (1)
Z (Eω)〉 = ε0χ

∗(−ω;ω)Eωg(t), (29)
where χ∗(−ω; ω) is the complex linear electric susceptibility component with fre-
quency ω of the medium, ε0 is the dielectric permittivity of the vacuum. The
complex linear susceptibility χ∗(−ω; ω) is a sum of the real χ′(−ω;ω) and the
imaginary χ′′(−ω; ω) parts

χ∗(−ω; ω) = χ′(−ω; ω)− iχ′′(−ω; ω), (30)
which may be written, according to Eqs. (22)–(24) in the form
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3ε0kTχ′(−ω; ω) = ρµ2(sω
11 sin2 Θ + sω

10 cos2 Θ) (31)
and

3ε0kTχ′′(−ω; ω) = −ρµ2(ωτ11s
ω
11 sin2 Θ + ωτ10s

ω
10 cos2 Θ), (32)

where snω
lm are the quadratic Debye–Kielich dispersional functions

snω
lm ≡ slm(nω) = [rnω

lm ]2 = (1 + n2ω2τ2
lm)−1, (33)

which decrease from the maximal value snω
lm(0) = 1 for ω = 0 to zero when

ωτlm →∞.
Equations (31), (32) describe the linear dielectric relaxation as a super-

position of two rotational motions around two perpendicular molecular axes of
symmetry. Those rotational motions were observed, for example, by Jadżyn
and co-workers [17], in linear dielectric spectroscopy with the solutions of 4-
n-decyloxyphenyl-4′-cyano-benzoate (DOPCB) (or C10H21-O-Ph-OOC-PH-CN)
molecules, for which the dispersional and absorptional spectra are the sum of
two components, corresponding to the rotational diffusion around the short and
long symmetry axes.

5. Nonlinear dielectric relaxation in dilute solution of dipolar,
symmetric-top molecules in spherical solvent

In this section we will discuss the properties of dispersion and absorption
of the Langevin saturation measured in NDE in a dilute solution of dipolar,
symmetric-top molecules in spherical solvents. These accurate methods of mod-
ern nonlinear dielectric spectroscopy permit measurements of such small effects
[14–16].

The NDE consists on the induction in the dielectric medium of the nonlinear
polarization by the strong constant field EZ and a weak measuring harmonic field
Eω cos ωt, Eq. (11), with λ ¿ 1. In this case we can neglect in the relaxational
functions (15)–(20) all the terms proportional to λ2 and λ3, and the result is

Azzz
10 (t) = 1 + λr10[cos(ωt− ψ10)

+r20 cos(ωt− ψ10 − ψ20) + r10r20 cos(ωt− 2ψ10 − ψ20)], (34)

4(1 + ξ)[Axxx
11 (t)− 1] = λr11[(1 + ξ) cos(ωt− ψ11)

+3r22 cos(ωt− ψ11 − ψ22) + (2ξ − 1)r20 cos(ωt− ψ11 − ψ20)

+3r11r22 cos(ωt− 2ψ11 − ψ22) + (2ξ − 1)r11r20 cos(ωt− 2ψ11 − ψ20)],(35)

2Axxz
10 (t)− 1 =

1
4
λ[2 cos ωt− r20 cos(ωt− ψ20)− r11r20 cos(ωt− ψ11 − ψ20)

+3r21 cos(ωt− ψ21) + 3ar10r21 cos(ωt− ψ21)

+3br11r21 cos(ωt− ψ11 − ψ21)], (36)
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2(1 + ξ)[Axzz
11 (t)− 1] = λ[(1− 2ξ)r20 cos(ωt− ψ20)

+r11r20 cos(ωt− ψ11 − ψ20)− 2ξr10r20 cos(ωt− ψ10 − ψ20)

+(1 + ξ)r11 cos(ωt− ψ11) + 3ξr21 cos(ωt− ψ21)

+3aξr10r21 cos(ωt− ψ10 − ψ21) + 3bξr11r21 cos(ωt− ψ11 − ψ21)]. (37)
It is seen from Eqs. (34)–(37) that only Azzz

10 (t) does not depend on the
anisotropy parameter ξ.

The third-order electric polarization (8) may be written in the form

〈P (3)
Z (Eω, E2

Z)〉 = [χ′(−ω; ω, 0, 0) cos ωt− χ′′(−ω; ω, 0, 0) sin ωt]EωE2
Z , (38)

where the real χ′(−ω;ω, 0, 0) and imaginary χ′′(−ω;ω, 0, 0) parts of the complex
nonlinear electric susceptibility are equal to

χ′(−ω; ω, 0, 0) = −{axxx
11 (ω, ξ) sin4 Θ + azzz

10 (ω) cos4 Θ

+[axxz
10 (ω, ξ) + axzz

11 (ω, ξ)] sin2 Θ cos2 Θ} ρµ4

45k3T 3
(39)

and

χ′′(−ω;ω, 0, 0) = {bxxx
11 (ω, ξ) sin4 Θ + bzzz

10 (ω) cos4 Θ

+[bxxz
10 (ω, ξ) + bxzz

11 ω, ξ)] sin2 Θ cos2 Θ} ρµ4

45k3T 3
. (40)

The dispersional behavior and the influence of the molecular shape on the
nonlinear susceptibility are described by the functions

4(1 + ξ)axxx
11 (ω, ξ) = s11{1 + ξ + 3s22[2s11 − ω2τ11τ22(1 + 2s11)]

+(2ξ − 1)s20[2s11 − ω2τ11τ20(1 + 2s11)]}, (41)

azzz
10 (ω) = s10{1 + s20[2s10 − ω2τ10τ20(1 + 2s10)]}, (42)

8(1 + ξ)[axxz
10 (ω, ξ) + axzz

11 (ω, ξ)]

= 2(1 + ξ)− 4(1 + ξ)s11 + 3(ξ − 1)s20 + 3(1 + 5ξ)s21

+(3− ξ)s11s20(1− ω2τ11τ20) + 3(1 + 2ξ)s10s21(1− ω2τ10τ21)

+9ξs11s21(1− ω2τ11τ21) + 2ξs10s20(1− ω2τ10τ20), (43)

4(1 + ξ)bxxx
11 (ω, ξ) = ωs11{(1 + ξ)τ11}+ 3s22[τ11 + 2s11(τ11 + τ22)]

+(2ξ − 1)s20[τ11 + 2s11(τ11 + τ20)]}, (44)

bzzz
10 (ω) = ωs10{τ10 + s20[τ10 + 2s10(τ10 + τ20)]}, (45)

8(1 + ξ)[bxxz
10 (ω, ξ) + bxzz

11 (ω, ξ)]

= ω{3(ξ − 1)τ20s20 − 4(1 + ξ)τ11s11
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+3(1 + 5ξ)τ21s21 + (3− ξ)(τ11 + τ20)s11s20

+3(1 + 2ξ)(τ10 + τ21)s10s21 + 9ξ(τ11 + τ21)s11s21

+2ξ(τ10 + τ20)s10s20}. (46)
In Eqs. (41)–(46) we ommitted the upper index n in snω

lm , which is 1. Equa-
tions (39)–(46) are the main result of this paper and will be used for detailed
graphical analysis of the influence of the symmetric-top shape of the molecule and
of the orientation angle Θ between its permanent dipole and the z-molecular axis,
on the linear and nonlinear dielectric dispersion and absorption in liquids.

We see from Eqs. (31),(32), (39), (40) that in the special case, when Θ = 0,
the dielectric relaxation processes do not depend on the anisotropy parameter ξ,
so the spherical-top Smoluchowski–Debye equation is a very good aproximation
for the molecules with Θ = 0 but with ξ different from 1.

Our Eqs. (39), (40) are equivalent to the results of Kalmykov [23], Eq. (32).
In his paper Kalmykov shows that the Euler–Langevin equation of the rota-
tional Brownian motion for an asymmetric-top molecule may be reduced to the
Smoluchowski–Debye equation. With his elegant method, the solution obtained
with the use of the Wigner Dj

mn(α, β, γ) functions, the experimental investigations
[16], performed by Jadżyn and co-workers, of the dielectric increments of dilute
solutions of mesogenic 10-TPEB molecules, for which Θ = 42◦± 2◦, were success-
fully explained and the value of the rotational diffusion anisotropy parameter was
evaluated as ξ = 8.7 for this molecule.

6. Graphical analysis of the linear and nonlinear
dielectric relaxation processes

Our aim is to analyze the changes in the Debye — linear and Langevin —
nonlinear dielectric relaxations, involved by symmetric shape of the molecules, in
comparison with the relaxations of spherical molecules. All plotted linear suscep-
tibilities, are normalized according to Eqs. (31), (32) with

ρµ2

3ε0kT
= 1.

Similarly for the nonlinear susceptibilities, Eqs. (39),(40), the normalization is

ρµ4

45k3T 3
= 1.

Figure 2 presents the dependences of the susceptibility χ′(−ω; ω), Eq. (31),
on the frequency ωτ20 of the ac electric field, in logarithmic scale, and the polar
angle Θ between permanent dipole moment and the symmetry axis of the molecule,
for some values of the anisotropy parameter ξ. For Θ = 0 all dispersion curves
are, for all values of ξ, identical — it is simply the case of the Smoluchowski–
Debye equation for the spherical top. The influence of the symmetric shape of the
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Fig. 2. Dependence of the linear susceptibility χ′(−ω; ω), given by Eq. (31), of the

frequency ωτ20 of the ac electric field and of the angle Θ between permanent dipole

moment and the symmetry axis of the molecule — for some values of the anisotropy

parameter ξ. The angle Θ is changing from 0 to π/2.

molecule on χ′(−ω; ω) is stronger for ξ > 1, for ξ < 1 the changes are smaller.
With increasing Θ , the region of dispersion shifts to lower frequencies, as we can
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Fig. 3. Maps — projection of the linear susceptibility χ′(−ω; ω), given by Eq. (31) on

the plane (Θ , log10 (ωτ20)).

see from Fig. 3, showing the projection of the linear susceptibility χ′(−ω; ω), given
by Eq. (31), onto the plane (Θ , log10(ωτ20)). Appriopriate colors or shades on all
figures in our paper are connected with the values of susceptibilities.

Figure 4 presents the dependences of the linear susceptibility χ′′(−ω;ω),
given by Eq. (32), of the frequency ωτ20 of the ac electric field and of the angle
Θ — for some values of the anisotropy parameter ξ, and similarly Fig. (5) gives
the projection of the linear susceptibility χ′′(−ω; ω), given by Eq. (32) onto the
plane (Θ , log10 (ωτ20)). These linear absorption curves are strongly changed, in
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Fig. 4. Dependence of the linear susceptibility χ′′(−ω; ω), given by Eq. (32), of the

frequency ω of the ac electric field and of the angle Θ between permanent dipole moment

and the symmetry axis of the molecule — for some values of the anisotropy parameter ξ.

comparison with the case ξ = 1 and Θ = 0, especially for ξ > 1. The frequency
of the maximal absorption shifts to lower frequencies with increasing ξ and Θ . It
is easy to see, especially in Fig. 5, that the symmetric absorption curves for ξ = 1
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Fig. 5. Maps — projection of the linear susceptibility χ′′(−ω; ω), given by Eq. (32) on

the plane (Θ , log10 (ωτ20)).

change with the values of ξ. For ξ < 1 we observe a shift of the maximum of
absorption towards lower frequencies ω. When the parameter ξ is increased the
situation becomes opposite and the effect is much stronger. In the latest picture
we also observe a significant decrease in absorption in the region of Θ ≈ π/4.

The effect of the nonspherical shape of the molecules is more pronounced
in the nonlinear dielectric relaxation. Figure 6 shows the dependences of the
nonlinear susceptibility χ′(−ω; ω, 0, 0), given by Eq. (39), of the frequency ωτ20

on the ac electric field, in the logarithmic scale, and on the angle Θ , whereas the
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Fig. 6. Dependence of the nonlinear susceptibility χ′(−ω; ω, 0, 0), given by Eq. (39), of

the frequency ωτ20 of the ac electric field, in the logarithmic scale, and of the angle Θ

between permanent dipole moment and the symmetry axis of the molecule — for some

values of the anisotropy parameter ξ.

projection of the nonlinear susceptibility χ′(−ω;ω, 0, 0), given by Eq. (39), on the
plane (Θ , log10(ωτ20)) is plotted in Fig. 7. The calculations were performed for
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Fig. 7. Maps — projection of the nonlinear susceptibility χ′(−ω; ω, 0, 0), given by

Eq. (39), on the plane (Θ , log10(ωτ20)).

some values of the anisotropy parameter ξ. We see a distinct shift of the region
of dispersion towards the lower frequencies with increasing Θ for all values of the
parameter ξ. Moreover, the changes in the dispersion for the angle Θ > π/4 are
smaller than for Θ < π/4.

Figure 8 shows the dependences of the nonlinear susceptibility
χ′′(−ω;ω, 0, 0), given by Eq. (40), of the frequency ωτ20 of the ac electric field
and of the angle Θ — for some values of the anisotropy parameter ξ ≤ 1.

Finally, the projection of the nonlinear susceptibility χ′′(−ω;ω, 0, 0), given
by Eq. (40), on the plane (Θ , log10 (ωτ20)) is given in Fig. 9.
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Fig. 8. Dependence of the nonlinear susceptibility χ′′(−ω; ω, 0, 0), given by Eq. (40), of

the frequency ωτ20 of the ac electric field and of the angle Θ between permanent dipole

moment and the symmetry axis of the molecule — for some values of the anisotropy

parameter ξ.

Our graphs indicate that the maximum value of nonlinear absorption de-
creases with increasing Θ and is shifted towards lower frequencies for ξ < 1 or
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Fig. 9. Maps — projection of the nonlinear susceptibility χ′′(−ω; ω, 0, 0), given by

Eq. (40), on the plane (Θ , log10 (ωτ20)).

higher frequencies, when ξ > 1. For the case of small values of ξ we can observe
— Fig. 9 — a small increase in the absorption in the region of Θ ≈ π/2, but it
disappears when ξ is increased.

For Θ = 0 all dispersion and absorption curves are identical with the non-
linear Langevin relaxation, described by the spherical-top rotational diffusion gov-
erned by the Smoluchowski–Debye model.

It is our hope that this analysis may be helpful in interpretation of the
dielectric relaxation experiments in liquids.
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[17] J. Jadżyn, G. Czechowski, D. Bauman, J.L. Dejardin, H. Kresse, R. Douali,

Ch. Legrand, Phys. Rev. E 71, 052701 (2005).
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