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Using the modified Hawking radiation of a Schwarzschild black hole

(based on the generalized uncertainty principle) we obtained the Bekenstein–

Hawking entropy of a higher dimensional Schwarzschild black hole. Further-

more, the thermodynamics of such black hole is studied.
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1. Introduction

If our universe is a brane embedded in some higher dimensional space, the
hierarchy problem can be solved where the higher dimensional Planck scale is low
and the extra dimensions large [1, 2]. In the brane-world scenario [3–6], gravita-
tional collapse of trapped matter on a brane will produce a black hole. On the
other hand, the higher dimensional black hole may be produced at a high energy
probe [7]. These black holes are microscopic, comparable in the size to the el-
ementary particles. The production of black holes by particle accelerators is an
exciting possibility. When it comes to producing high energies, no device outdoes
great accelerators. These machines accelerate subatomic particles to velocities ex-
ceedingly close to the speed of light. These particles then have enormous kinetic
energies. At the LHC, a proton will reach energy of roughly 7 TeV. According to
the Einstein special relativity these energies are equivalent to a mass of 10−23 kg
when two particles collide at the closed range, their energy is concentrated into a
tiny region of space. This types of black hole are microscopic, comparable in size
to elementary particles, they could evaporate shortly after they had formed, be-
cause the emission carries out the energy, the mass of black hole tends to decrease.
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The evaporation of these holes would leave very distinctive imprints on the detec-
tors. Typical collisions produce moderate numbers of high-energy particles, but
decaying black hole is different. According to the Hawking works [11], the black
hole radiates a large number of particles and the prospect of producing black holes
on Earth may strike. How do we know that it would safely decay, as Hawking
predicted, instead of continuing to grow, eventually consuming the entire planet?
It turns out that general quantum reasoning implies that microscopic black holes
cannot be stable and therefore are safe. Concentrations of mass energy such as
elementary particles, are stable only if a conservation law is forbidden, their decay
is no conservation law to stabilize a small black hole. In quantum theory, anything
not expressly forbidden is compulsory, so small black hole will rapidly decay, in
accordance with the second law of thermodynamics [8–12]. Indeed, according to
quantum mechanics an empirical argument corroborates that black holes would
pose no danger. In this letter we calculate the Hawking radiation of higher di-
mensional black holes by a generalized uncertainty principle. In the canonical
quantum gravity the character of the Hawking radiation is modified when quan-
tum gravity effects are properly taken into account, even for non-rotating, neutral
and very massive black hole with respect to the Planck scale. Derivation of the
usual Hawking radiation is based on the uncertainty principle [11], ∆xi∆pj ≥ ~δij

where i, j = 1, . . . , d − 1. Derivation of the Hawking radiation of the mini black
hole will be based on the generalized uncertainty principle.

2. Theory

Let us begin with a Schwarzschild black hole that lives on a d-dimensional
space-time. In this letter we obtain the black hole radiation in the higher dimen-
sional space. Furthermore, the thermodynamics of such black hole is considered.

A natural candidate for such hole is the d-dimensional Schwarzschild solu-
tion,

ds2 = (1− θd−2)c2dt2 − (1− θd−2)−1dr2 + r2dΩd−2, (1)
where

θd−2 =
16πGdM

(d− 2)Ωd−2c2rd−3

and Gd is the d-dimensional Newton constant. Let us consider a black hole as a
d-dimensional cube of size equal to twice its radius (Schwarzschild radius) rs; the
uncertainty in the position of a Hawking particle, during the emission, is

∆x ≈ 2rs = 2λd

(
GdM

c2

)1/d−3

, (2)

where

λd =
[

16π

(d− 2)Ωd−2

]1/d−3

.

Using the usual uncertainty principle, the uncertainty in the energy of the Hawk-
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ing particle is

∆E ≈ c∆p ≈ c

∆x
≈ Mplc

2

2λd
m−1/(d−3), (3)

where m = M/Mpl is the mass in the Planck unit, Mpl is the d-dimensional Planck
mass. ∆E is identified with the temperature of black hole radiation. Setting the
black hole radiation mass m to d−3

4π , it is easy to obtain the temperature of the
black hole in d-dimensional space-time. The Hawking temperature is related to
the Schwarzschild radius by

T =
1

4πrh
=

1
2π∆x

. (4)

From (3) and (4) we obtain

T =
d− 3
4πλd

Mplc
2m−1/(d−3). (5)

The evaporation of black hole would leave very distinctive imprints on the de-
tectors and temperature of such black hole could be calculated. To study the
quantum gravity effects in the Hawking temperature, one can take into account
the generalized uncertainty principle. Generalized uncertainty principle has been
the subject of much interesting works over the years and a lot of papers have
appeared in which that usual uncertainty is modified at the framework of micro-
physics as [13, 14]:

∆xi ≥ ~
∆pi

+ l2pl

∆pi

~
, (6)

where lpl is the Planck length. The term l2pl
∆pi

~ in Eq. (6) shows the gravitational
effects to usual uncertainty principle. In the canonical quantum gravity the area
of black hole factory is quantized as A = nα~ (with G = c = 1). For this reason
we must obtain the lower bound on the black hole factory radius. Let us consider
a quantum black hole factory, an attempt to measure the radius of the black hole,
more precisely that is, to make R small — thus resulting in an increase in ∆p, but
according to Eq. (6) for detection of small distances by going to very high mo-
menta, the behavior of the Heisenberg microscope changes and a lower bound on
the (Schwarzschild) radius rs could be obtained. Setting 2rs as ∆xi and inverting
Eq. (6) we obtain

rs

2l2pl


1−

√
1− 4l2pl

r2
s


 ≤ ∆pi

~
≤ rs

2l2pl


1 +

√
1− 42l2pl

r2
s


 . (7)

Comparing Eqs. (2), (4), (5) with (7) we obtain the Hawking radiation of
d-dimensional black hole,

T ′ =
d− 3
4π

λdm
1/(d−3)

(
1−

√
1− 1

λ2
dm

2/d−3

)
Mplc

2. (8)

The Bekenstein–Hawking entropy is usually derived from the Hawking tempera-
ture. M means energy and TH means temperature. The entropy s may be found
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from the well known thermodynamics relation,

T =
dE

dT
=

dM

dT
. (9)

Inserting (8) to (9) one finds

d− 3
4π

λdm
1/(d−3)

(
1−

√
1− 1

λ2
dm

2/d−3

)
Mplc

2 =
dM

dS
. (10)

That means

S = 2πλd


1

2
ln

∣∣∣∣∣∣

√
1− 1

λ2
dm−2/d−3 + 1

√
1− 1

λ2
dm−2/d−3 − 1

∣∣∣∣∣∣
− 1−

√
1− 1

λ2
dm

−2/d−3

− ln

∣∣∣∣∣1−
√

1− 1
λ2

dm
−2/d−3

∣∣∣∣∣

)
+ const. (11)

Recalling that the Schwarzschild radius is given by

rs = λd

(
GdM

c2

)1/d−3

, (12)

the surface area of the black hole horizon is given by

4π(rs)2 = 4πλd

(
GdM

c2

)1/d−3

= Area. (13)

The fact that the entropy depends on the surface area rather than the volume of
the black hole is reminiscent of the elementary physical fact that the total charge
of an electrically charged solid sphere of material is related to the surface area,
not the volume. So the black hole entropy is

S =
Area

2

(
GdMplm

c2

)−1/d−3

1

2
ln

∣∣∣∣∣∣

√
1− 1

λ2
dm−2/d−3 + 1

√
1− 1

λ2
dm−2/d−3 − 1

∣∣∣∣∣∣
− 1

−
√

1− 1
λ2

dm
−2/d−3

− ln

∣∣∣∣∣1−
√

1− 1
λ2

dm
−2/d−3

∣∣∣∣∣

)
+ const. (14)

Equation (14) is the entropy of a higher dimensional black hole whose temperature
is modified based on the generalized uncertainty principle.

3. Conclusion

The Bekenstein–Hawking entropy was derived from the Hawking tempera-
ture. The Hawking temperature receives a modification based on the generalized
uncertainty principle. We presented a solution that shows the Bekenstein–Hawking
entropy in the higher dimensional space. Furthermore, the thermodynamics of
such system is studied.
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