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The theory of copulas provides a useful tool for modeling dependence in

risk management. In insurance and finance, as well as in other applications,

dependence of extreme events is particularly important, hence there is a need

for the detailed study of the tail behaviour of the multivariate copulas. In

this paper we investigate the class of copulas being the weighted means of

copulas having homogeneous lower tails. We show that having only such

information on the structure of dependence of returns from assets is enough

to get estimates on value at risk of the multiasset portfolio in terms of value

at risk of one-asset portfolios.

PACS numbers: 89.65.Gh

1. Introduction

The aim of this paper is to show the advantages of modeling the dependence
between the extreme events with the help of copulas. Let us consider the following
case. An investor operating on an emerging market, has in his portfolio several
currencies which are highly dependent. Let si, i = 1, . . . , d be the quotients of the
currency rates at the end and at the beginning of the investment. Let wi be the
part of the capital invested in the i-th currency,

∑
wi = 1, wi ≥ 0. Therefore the

final value of the portfolio equals

W1(w) = (w1s1 + . . . + wdsd)W0. (1)
For portfolio consisting of only one currency (say i-th) we put

w = ei = (0, . . . , 0, 1, 0, . . . , 0). (2)
Let us note that at the moment of the beginning of the investment only W0 and
wi’s are known. si’s remain uncertain, therefore we represent them by random
variables on a certain probability space (Ω ,F , P ).

The crucial point is to estimate the risk of the investment. As a measure
of risk we shall consider “value at risk” (VaR), which in last years became one of
the most popular measures of risk in the “practical” quantitative finance (see for
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example [1–9]). Roughly speaking the idea is to determine the biggest amount one
can lose on a certain confidence level 1− α:

VaR1−α(w) = sup{V : P (W0 −W1(w) ≤ V ) < 1− α}. (3)
In order to determine VaR accurately one has to deal with the complexity of the
problem. The extremes hardly follow the normal distribution law. Therefore the
main challenge is to describe properly the interdependences of risk factors (in
our case the changes of currency rates). In this presentation, it will be based on
copulas, which are scaleless dependence measures of random variables. We will
show that sometimes it is enough to have only the partial information on the given
copula.

The main result we would like to present is the diversification formula, i.e..
the following estimate of the value at risk of a given portfolio w in terms of value
at risk of one-currency portfolios ei (cf. [10] for two-dimensional case):∑

wiVaR1−α(ei) ≥ VaR1−α(w). (4)
The above estimate is valid for sufficiently small α under the mild assumptions:

• The copula C of si’s is a weighted mean (mixture) of copulas Ci having
nonzero homogeneous lower tails,

C(q) = a0C0(q) + a1C1(q) + . . . + amCm(q), a0, . . . , am ≥ 0,

m∑

i=0

ai = 1 (5)

and for sufficiently small q:

Ci(q) = Li(q), ∀t > 0 Li(tq) = tkiLi(q),

1 = k0 < k1 < . . . < km. (6)

• For i = 1, . . . , d, for sufficiently small x, the function Gi(x) = 1/Fi(x),
where Fi is the distribution function of si, is convex (i.e. the hazard rate
F ′(t)/F (t)2 is decreasing).

• For i = 1, . . . , d, for a positive w and for sufficiently small α:

Fi(w · (F−1
1 (α) + . . . F−1

d (α))) ≤
{

δα
1

k1 if m ≥ 1,

δ if m = 0.
(7)

The first assumption is modelling the asymptotic dependence (cf. [11] Th. 2).
For example it describes very well the behaviour of foreign exchange rates on an
emerging market, where the extreme changes are usually due to the local factors
(cf. [10]).

The second one is fulfilled by a wide variety of probability laws. For example
it is valid if the distributions of − ln si have the same upper tails as normal, Pareto
or Gamma distribution (i.e. if their distribution functions coincide for enough big
arguments).
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The last one means that the probability distributions of the extreme down-
falls for different currencies “behave” in a similar way.

2. Notation
2.1. Copulas

We recall that a function

C : [0, 1]d −→ [0, 1] (8)
is called a copula (see [12] §2.10, [13] §4.1, [14] §4.4) if for every u = (u1, . . . , ud)
and v = (v1, . . . , vd) (ui, vi ∈ [0, 1]) and every j ∈ {1, . . . , d}

(i) uj = 0 ⇒ C(u) = 0; (9)

(ii) (∀i 6= j ui = 1) ⇒ C(u) = uj ; (10)

(iii) u ¹ v ⇒ VC(u, v) ≥ 0, (11)
where u ¹ v denotes the partial ordering on Rd (u ¹ v ⇔ ∀i ui ≤ vi) and VC(u, v)
is the C-volume of the rectangle I(u, v), the one with lower vertex u and upper
vertex v.

VC(u, v) =
2∑

j1=1

. . .

2∑

jd=1

(−1)j1+...+jdC(a1,j1 , . . . , ad,jd
), (12)

where ai,1 = ui and ai,2 = vi for i = 1, . . . , d. The functions with the last property
are called n-nondecreasing. Those which fulfill the first one are called grounded.

Remark 1. (cf. [15], Th. 12.5) Every continuous, grounded,
n-nondecreasing function

H : [0, a]d −→ R (13)
is a distribution function of a Borel measure µH on [0, a]d:

H(u) = µH(I(0, u)), (14)

µH(I(u, v)) = µH(int(I(u, v))) = VH(u, v). (15)
Due to the second condition every copula is a distribution function of a probability
measure on the unit rectangle [0, 1]d with uniform margins (cf. [16], §1.6). Fur-
thermore, the above remark remains true if H is defined on the whole multioctant
[0, +∞)d.

Let Xi, i = 1, . . . , d be random variables defined on the same probability
space (Ω ,M,P). Their joint cumulative distribution FX can be described using
an appropriate copula CX (“Sklar Theorem” see [12], Theorem 2.10.11, [13], The-
orem 4.5):

FX (x) = CX (FX1(x1), . . . , FXd
(xd)), (16)

where FXi are cumulative distributions of Xi. Let us note that the strictly increas-
ing transformations of random variables Xi do not affect the copula. Indeed, if

X ′i = fi(Xi), i = 1, . . . , d, (17)
where fi are strictly increasing (and so invertible), then

FX ′(x) = FX (f−1
1 (x1), . . . , f−1

d (xd)) (18)
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= CX (FX1(f
−1
1 (x)), . . . , FXd

(f−1
d (xd))) = CX (FX ′1(x1), . . . , FX ′d(xd)). (19)

Therefore if one is interested in tail dependence of random variables rather than
in their individual distribution, then the proper choice is to study the copula. The
more so, since the copula is uniquely determined at every point u such that the
equations FXi(xi) = ui have solutions.

For various applications of copulas to finance see for example [13,
17–19, 10, 20].

2.2. Model assumptions

We assume that for t > 0 the distribution function of each si − Fi(t) is
positive and the joint probability distribution of si’s is continuous with respect to
the Lebesgue measure and is determined by a copula C:

Fs(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (20)
Furthermore, C is a weighted mean of copulas Cj :

C(q) = a0C0(q) + a1C1(q) + . . . + amCm(q),

a0, . . . , am ≥ 0,

m∑

i=0

ai = 1, (21)

and there is a constant δ ∈ (0, 1) such that:
A1. For q = (q1, . . . qd) and 0 ≤ qi ≤ δ, Cj(q) = Lj(q), where Lj is some
nonzero positive homogeneous function of degree kj , 1 = k0 < k1 < . . . < km

(∀t > 0 Lj(tq) = tkj Lj(q)).
A2. For i = 1, . . . , d the function Gi(t) = 1

Fi(t)
restricted to t ∈ F−1

i ((0, δ]) is
convex.
A3. For i = 1, . . . , d

∀w > 0 ∃α0 ∀0 < α ≤ α0

Fi(w · (F−1
1 (α) + . . . F−1

d (α))) ≤
{

δα
1

k1 if m ≥ 1,

δ if m = 0.
(22)

The second assumption implies that the preimage of δ consists of just one
point and Fi restricted to [0, F−1

i (δ)] is strictly increasing. Therefore we get a
simpler formula for value at risk of one-asset portfolios.
Corollary 1. For α ∈ (0, δ],

VaR1−α(ei) = W0 · (1− F−1
i (α)), i = 1, . . . , d. (23)

Let us note that the above formula is useful for the practical applications. It
reduces the determination of VaR for one-asset portfolios to the estimation of the
α-quantile of the quotient of the currency rates at the end and at the beginning
of the investment, which can be accomplished by a standard statistical procedure.

In [21, 11] we showed that there is a large class of copulas whose tails can be
approximated by a homogeneous function L of degree 1. Let us recall the basics
about such L’s. Comparing [11], Theorem 3, and the construction from the proof
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of Proposition 6 (also [11]) one gets
Theorem 1. For a homogeneous of degree 1 function L, L : [0, +∞)d → R, the
following conditions are equivalent:
1. L is equal to the lower tail of some copula C.
2. L is d-nondecreasing and

0 ≤ L(u) ≤ min(u1, . . . , ud) for u º 0. (24)
3. L is continuous, grounded, d-nondecreasing and µL = m× µ∆, where m is the
Lebesgue measure on the real halfline and µ∆ is a measure on the unit simplex
∆ = {q ∈ Rd

+ : q1 + . . . + qd = 1} such that∫

∆

1
qi

dµ∆(q) ≤ 1 for i = 1, . . . , d. (25)

Basing on Theorem 1 we can reduce by one the dimensionality of our prob-
lem. Indeed, the multioctant is the Cartesian product of a halfline and simplex,
Rd

+ = R+ ×∆. Therefore, due to the Fubini Theorem, as a consequence of point
3 of the above theorem, we get the following fact.
Corollary 2. For every closed set A, A ⊂ Rd

+,

µL(A) =
∫

∆

m(R+ξ ∩A)dµ∆(ξ), (26)

where R+ξ is a halfline spanned by vector ξ.

3. The estimate

We assume, that ∀i wi > 0.
Theorem 2. For α from (0, 1), such that

d∑

i=1

wiF
−1
i (α) ≤ min{wjF

−1
j (δ∗) : j = 1, . . . , d},

δ∗ =

{
δα

1
k1 if m ≥ 1,

δ if m = 0,
(27)

the following inequality holds:

VaR1−α(w) ≤ w1VaR1−α(e1) + . . . + wdVaR1−α(ed). (28)
Let us note that due to condition A3 the set of α fulfilling the assumptions

of theorem 2 is not empty. The proof of the theorem will be based on the quantile
transformation and properties of the following family of sets.

For λ = (λ1, . . . , λd), λi > 0, we put

Yλ =

{
q ∈ Rd

+ :
d∑

i=1

λi

qi
≥ 1

}
. (29)

Lemma 1.

µL0(Yλ) ≤
∑

λi. (30)
Proof.

We base on the fact that L0 is homogeneous of degree 1 and
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µL0(Yλ) =
∫

∆

m(R+ξ ∩ Yλ)dµ∆(ξ). (31)

The intersection of Yλ and the halfline given by the vector ξ is a segment of length∑ λi

ξi
,

R+ξ ∩ Yλ =
{

t :
∑ λi

tξi
≥ 1

}
=

{
t : 0 ≤ t ≤

∑ λi

ξi

}
. (32)

Therefore

µL0(Yλ) =
∫

∆

∑ λi

ξi
dµ∆(ξ) =

∑
λi

∫

∆

∑ 1
ξi

dµ∆(ξ) ≤
∑

λi. (33)

¤
For r > 0 we put

Vr =

{
q ∈ Rd

+ :
d∑

i=1

wiF
−1
i (qi) ≤ r

}
. (34)

Lemma 2. For positive r and α ∈ (0, 1) such that

r =
d∑

i=1

wiF
−1
i (α) ≤ min{wjF

−1
j (δ) : j = 1, . . . , d} (35)

the following inclusions hold:

Vr ⊂
[
0, F1

(
r

w1

)]
× . . .×

[
0, Fd

(
r

wd

)]
⊂ [0, δ]d, Vr ⊂ Yλ, (36)

where

λi = α
wic

−1
i∑

wjc
−1
j

; cj = F ′j(F
−1
j (α)). (37)

Proof.
If q belongs to Vr then

d∑

i=1

wiF
−1
i (qi) ≤ r =

d∑

i=1

wiF
−1
i (α) ≤ min{wjF

−1
j (δ)}. (38)

Therefore for each i:

wiF
−1
i (qi) ≤ r ≤ wiF

−1
i (δ) (39)

and

qi ≤ Fi

(
r

wi

)
≤ Fi(F−1

i (δ)) = δ. (40)

To proof the second inclusion, we use the convexity of Gi = 1/Fi.
1
qi
− 1

α
=

1
Fi(F−1

i (qi))
− 1

Fi(F−1
i (α))

= Gi(F−1
i (qi))−Gi(F−1

i (α))

≥ G′i(F
−1
i (α))

(
F−1

i (qi)− F−1
i (α)

)

=
−F ′i (F

−1
i (α))

(Fi(F−1
i (α)))2

(
F−1

i (qi)− F−1
i (α)

)
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= − ci

α2

(
F−1

i (qi)− F−1
i (α)

)
(41)

thus

F−1
i (qi)− F−1

i (α) ≥ −α2

ci

(
1
qi
− 1

α

)
. (42)

If q belongs to Vr then we obtain

0 ≥
d∑

i=1

wiF
−1
i (qi)− r =

d∑

i=1

wiF
−1
i (qi)−

d∑

i=1

wiF
−1
i (α)

≥ −
d∑

i=1

wiα
2

ci

(
1
qi
− 1

α

)

= −α




d∑

i=1

λi

qi

d∑

j=1

wj

cj
−

d∑

i=1

wi

ci


 = −α

d∑

j=1

wj

cj

(
d∑

i=1

λi

qi
− 1

)
. (43)

Therefore

0 ≤
∑ λi

qi
− 1, (44)

and therefore q belongs to Yλ.
¤

Corollary 3. Under the assumptions of theorem 2 and lemma 2, for each i

µLi(Vr) ≤ α. (45)
Proof.
Case L0. We base on the inclusion Vr ⊂ Yλ (lemma 2) and the estimated

measure of Yλ (lemma 1).

µL0(Vr) ≤ µL0(Yλ) ≤
∑

λi = α. (46)

Case Li, i = 1, . . . , m. We base on the inclusion Vr ⊂ ×d
i=1[0, Fi( r

wi
)] from

lemma 2 and the quasihomogeneity of Li.

µLi(Vr) ≤ µLi

(
×d

i=1

[
0, Fi

(
r

wi

)])
= Li

(
F1

(
r

w1

)
, . . . , Fd

(
r

wd

))

≤ Li(δα
1

k1 , . . . , δα
1

k1 ) = α
ki
k1 Li(δ, . . . , δ) = α

ki
k1 Ci(δ, . . . , δ) ≤ α. (47)

¤
Proof of theorem 2.
In order to estimate VaR1−α(w) we consider

1− P
(
W0 −W1(w) ≤

∑
wiVaR1−α(ei)

)

= P
(
W0 −W1(w) ≥

∑
wiVaR1−α(ei)

)

= P
(
1−

∑
wisi ≥

∑
wi(1− F−1

i (α))
)

= P
(∑

wisi ≤
∑

wiF
−1
i (α)

)
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= P (
∑

wisi ≤ r) = µC(Vr)

=
∑

aiµCi
(Vr) =

∑
aiµLi

(Vr) ≤
∑

aiα = α. (48)
Therefore

P
(
W0 −W1(w) ≤

∑
wiVaR1−α(ei)

)
≥ 1− α. (49)

Since

VaR1−α(w) = sup{V : P (W0 −W1(w) ≤ V ) < 1− α}, (50)
we obtain the estimate

VaR1−α(w) ≤
∑

wiVaR1−α(ei). (51)
¤

Remark 2. If a0 = 1 then condition A3 is not necessary (cf. [20]), on the
other hand if a0 = 0 then we may omit condition A2.

4. Conclusions

We proved in this paper that under the mild assumptions, for sufficiently
small α the value at risk of a portfolio such that wi part of the capital is invested
in i-th currency (wi ≥ 0) is smaller the w-weighted sum of values at risk of one-
asset portfolios

VaR1−α(w) ≤ w1VaR1−α(e1) + . . . + wdVaR1−α(ed). (52)
Since the supervision institutions, like the Basle Committee on Banking Super-
vision (cf. [1]), impose the rules that the value of risk should not exceed certain
threshold, such an estimation simplifies the task of a risk manager. Indeed, if the
w-weighted sum of VaR’s of one-asset portfolios does not exceed the threshold so
does the VaR of the portfolio w.
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