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In this paper, we try to model the dynamics of short term interest rate

using the fractional nonhomogeneous differential equation with stochastic

free term. This type of equation is similar to one which represents the vis-

coelastic behavior of certain materials from rheologic point of view. As a final

result we obtain the closed formula for prices of zero-coupon bonds. They

are analogous to those in Vasiček model, where instead of the exponential

functions we have the Mittag–Leffler ones.

PACS numbers: 89.65.Gh

1. Motivation

One of the most basic tasks of actuaries and financial analysts lies in com-
puting present values of various cash flow streams. No matter how complicated
the pattern of cash flow, this is straightforward in a world of certainty. In the real
world the presence of stochastic interest rates complicates matters considerably,
even for the simplest cash flow streams.

The interest rate market tells us how the value of money today is linked to
its value in the future. As for share prices, foreign exchange or stocks indices,
future values of interest rates are uncertain and therefore call for modelling by
stochastic processes. In contrast to a share price, we do not expect an interest
rate r(t) to grow on average in an exponential way, but rather to fluctuate in a
reasonable range around some fixed value.

It is well-known fact that there are many significant analogies between dy-
namics and stochastics of complex physical and economical systems. The methods
and models, which describe physical phenomena, become very useful background
in analysis of economical phenomena, cf. [1–3]. This likeness brought us to frac-
tional relaxation equation.

2. Introduction

A basic interest bearing security is a discount or zero-coupon bond. It pays
1 PLN, say, at time of maturity T . The main question is: how much is the asset
worth at time T0 < T1?
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We write B(T0, T1) for the price of a zero-coupon bond at time T0 ≤ T1.
Clearly B(T1, T1) = 1 PLN. Hence the price of a zero-coupon bond in contrast
to a share price, depends on two dates. This matters a lot because bonds with
different maturities are dependent: the 20-year and 10-year bond will behave in
a very similar way on a short term basis, and therefore they will not be traded
separately.

The classical model of interest rate term structure takes

B(T0, T1) =
BT0

BT1

, (1)

where Bt is a deterministic accumulation process (saving account with floating
interest rate). In fact, today, one does not know the future interest rate of saving
account. This is why the recent models describe Bt as a stochastic process on
some probability space (Ω ,M, P ) with filtration Ft and

B(T0, T1) = EQ

(
BT0

BT1

|FT0

)
. (2)

P is a real measure and Q is some measure equivalent to P (see [4] for probabilistic
notation and [5] for basics of mathematical finance). Then one may take the
formula (2) as weighted average of all possible values of random variable BT0

BT1
.

Let us assume that r(t) is Ft-adapted process modelling interest rate of bank
account (the so-called short term interest rate). Then a bond value is given as
follows:

B(T0, T1) = EQ

[
exp

(
−

∫ T1

T0

r(s)ds

)
|FT0

]
∀T0 ∈ [0, T1] (3)

and most often r(t) is modelled as Itô process (diffusion process) with dynamics
described by differential Itô equation

dr(t) = µ(t, r(t))dt + σ(t, r(t))dW (t), (4)
where W (t) is Q-Wiener process adapted to the filtration Ft.

It is well known that we have two types of stochastic differential equations:
Itô and Stratonowicz ones cf. [6]. The solution of Itô Eq. (4) is also a solution of
Stratonowicz equation

dr(t) = µ̃(t, r(t))dt + σ(t, r(t))dW (t), (5)
with

µ̃(t, r(t)) = µ(t, r(t))− 1
2
σ(t, r(t))

∂σ(t, r)
∂r

. (6)

And successively the solution of (5) proves a solution of the equation, which
is commonly termed as the Langevin equation

dr(t)
dt

= µ̃(t, r(t)) + σ(t, r(t)) ξ(t), (7)

where ξ(t) is generalized stochastic process idealized as so-called white noise.
Let us replace the classic differential operator in (7) by fractional differential

operator cf. [7]



Modelling of Short Term Interest Rate . . . 615

Dα
0+

r(t) = µ̃(t, r(t)) + σ(t, r(t))ξ(t), 0 < α ≤ 1. (8)
The fractional derivative operators have allowed for the modelling of some

special complex systems in nature with anomalous dynamics, such as the atmo-
spheric diffusion of pollution, cellular diffusion processes, network traffic, signal
transmission through strong magnetic fields, the effect of speculation on the prof-
itability of stocks in financial markets, and any more. The point is whether the
solution r(t) of Eq. (7) will model the interest rate more precisely than the solution
of the classical one?

3. The Vasiček model

Let us try to answer this question in case of the Vasiček model of interest
rate. Standard model is the following:

dr(t) = (a− br(t))dt + σdW (t), a, b, σ = const > 0, (9)
with initial condition r(0) = r0.

In this case µ = µ̃, so the Stratonowicz equation and Eq. (9) have the same
solution

r(t) = r0 exp(−bt) +
a

b
(1− exp(−bt)) + σ

∫ t

0

exp(−b(t− u))dW (u). (10)

Let us note that the deterministic part of r(t) tends to a/b, when t →∞.
The stochastic component has the expected value 0 and its variance tends

to σ2/2b.

4. Fractional generalization of the Vasiček model

We consider now the Langevin equation corresponding to Eq. (9):
dr(t)
dt

= (a− br(t)) + σξ(t). (11)

Fractional generalized Langevin equation takes the following form:

Dα
0+

r(t) = (a− br(t)) + σξ(t), 0 < α ≤ 1. (12)
Due to linearity, the solution r(t) of Eq. (12) is the sum of two components:

• the general solution of deterministic equation

Dα
0+

r(t) + b r(t) = a (13)
and

• the particular solution of stochastic equation

Dα
0+

r(t) + b r(t) = σξ(t). (14)
Theorem 4.1. The general solution of deterministic equation

Dα
0+

r(t) + br(t) = a, t > 0 (15)
has the following form:

rdet(t) = Ctα−1Eα,α(−btα) + atαEα,α+1(−btα), C ∈ R, (16)
where
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Eα,β(z) :=
∞∑

k=0

zk

Γ(αk + β)
, z, β ∈ C, Reα > 0, (17)

is the Mittag–Leffler function.
The proof is based on Laplace transform cf. [7] cor. 5.1 and th. 5.4. Let

us note that like r(t) in classical Vasiček model, here rdet(t) tends to a/b, when
t →∞.

Theorem 4.2. The particular solution of stochastic equation

Dα
0+

r(t) + br(t) = σξ(t), t > 0 (18)
has the following form:

rstoch(t) = σtα−1Eα,α(−btα) ∗ ξ(t). (19)
Proof. After the properties of Laplace transform cf. [8] we obtain

Dα
0+

rstoch(t) = L−1[sαL[rstoch(t)](s)]

= L−1[sαL[σtα−1Eα,α(−btα) ∗ ξ(t)](s)]

= L−1[sασL[tα−1Eα,α(−btα)](s) · L[ξ(t)](s)]

= L−1

[
sασ

1
sα + b

· L[ξ(t)](s)
]

= L−1

[
σ

(
1− b

sα + b

)
· L[ξ(t)](s)

]

= σL−1[L[ξ(t)](s)]− σbL−1

[
1

sα + b
· L[ξ(t)](s)

]

= σξ(t)− bσL−1[L[tα−1Eα,α(−btα)](s) · L[ξ(t)](s)]

= σξ(t)− bσtα−1Eα,α(−btα) ∗ ξ(t) = σξ(t)− brstoch(t). (20)
Remark 4.1. If 0.5 < α ≤ 1 then rstoch(t) can be expressed as a stochastic

integral

rstoch(t) = σ

∫ t

0

(t− s)α−1Eα,α(−b(t− s)α)dW (s). (21)

5. Zero-coupons bonds pricing

For the pricing of zero-coupon bonds it is useful to introduce an auxiliary
stochastic process Y (T0, t) depending on the parameter T0. We put

B(T0, T1) = EQ(exp(−Y (T0, T1)|FT0), (22)
where

Y ′(T0, t) = r(t) (23)
and

Y (T0, T0) = 0. (24)
We separate from Y (T0, T1) deterministic and stochastic parts

Y (T0, T1) = Ydet(T0, T1) + Ystoch(T0, T1), (25)
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Ydet(T0, T1) =
∫ T1

T0

rdet(t)dt

= CtαEα,α+1(−btα)|T1
T0

+ atα+1Eα,α+2(−btα)|T1
T0

, (26)

Ystoch(T0, T1) = σtαEα,α+1(−btα) ∗ ξ(t)|T1
T0

= σ

∫ T1

0

(T1 − s)αEα,α+1(−b(T1 − s)α)dW (s)

−σ

∫ T0

0

(T0 − s)αEα,α+1(−b(T0 − s)α)dW (s)

= σ

∫ T0

0

[(T1 − s)αEα,α+1(−b(T1 − s)α)

−(T0 − s)αEα,α+1(−b(T0 − s)α)]dW (s)

+σ

∫ T1

T0

(T1 − s)αEα,α+1(−b(T1 − s)α)dW (s)

= Ystoch1(T0, T1) + Ystoch2(T0, T1). (27)
Hence we get decomposition

Ystoch(T0, T1) = Ystoch1(T0, T1) + Ystoch2(T0, T1), (28)
where Ystoch1(T0, T1) is FT0 measurable, Ystoch2(T0, T1) is FT1 measurable, inde-
pendent of FT0 and has normal distribution N(0,Σ2),

Σ 2 = σ2

∫ T1

T0

(T1 − s)2αE2
α,α+1(−b(T1 − s)α)ds. (29)

Theorem 5.1.

B(T0, T1) = exp
(
−Ydet(T0, T1)− Ystoch1(T0, T1) +

Σ 2

2

)
. (30)

Proof.
We apply the formula for the expected value of the log-normal random vari-

able.

B(T0, T1) = EQ(exp(−Ydet(T0, T1)− Ystoch1(T0, T1)− Ystoch2(T0, T1))|FT0)

= exp(−Ydet(T0, T1)) exp(−Ystoch1(T0, T1))EQ(exp(−Ystoch2(T0, T1)))

= exp(−Ydet(T0, T1)) exp(−Ystoch1(T0, T1)) exp
(

Σ 2

2

)
. (31)

6. Conclusions

The fractional differential operators are powerful tools used successfully in
various areas of science and engineering. One of the key of these applications
is that under a certain limit the fractional theory includes the classical. As it
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is expected the dynamics of the fractional calculus systems is different from the
classical one, but the classical dynamics is recovered as a particular case.

In this paper we generalized the classical Vasiček model and obtained a new
term structure model, which emphasizes the impact of the fluctuations of historical
interest rates on the actual prices of bonds with different maturities. The classical
results are reobtained when the degree of the fractional operator α = 1.

The solution of fractional differential equation is represented in the integral
form. However it is possible to make effective numerical computations which give
fair results satisfying financial analysts.
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