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A subdiffusion process, similar to a Zeldovich-Kompaneets heat con-

duction process, is defined by a nonlinear diffusion equation in which the

diffusion coefficient takes the form D = a(t)fn, where a = a(t) is an exter-

nal time modulation, n is a positive constant, and f = f(x, t) is a solution to

the nonlinear diffusive equation. It is shown that a Zeldovich-Kompaneets

solution satisfies the subdiffusion equation if a = a(t) is replaced by the mean

value of a. Also, a solution to the subdiffusion equation is constructed that

may be useful in description of biological, social, and financial processes.
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1. Introduction

Diffusion with constant coefficient is an idealised process. A nonlinear pro-
cess in which the diffusion coefficient is a power of probability density and for
small values of probability the diffusion is vanishing, represents a subdiffusion.

Let j denote a flux of Brownian particle diffusion. According to the Fick law
j = −D∂f/∂x, where f = f(x, t) is the distribution function which depends on
position x and time t. A nonlinear process in which the diffusion coefficient takes
the form

D = afn, (1)
where a and n are constants, called the Zeldovich–Kompaneets subdiffusion as it
is analogous to a nonlinear heat flow discussed by those authors in 1950 [1, 2].
Such dependence of D on f leads for n > 0 to limited diffusion without tails, that
is to a subdiffusion.

In the present paper a subdiffusion process is discussed in which the coeffi-
cient a in Eq.(1) is a prescribed function of time

a = a(t). (2)
Such variation of a denotes modulation of diffusive process by external reasons.
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For example, it may reflect seasonal changes of moisture or nutrients in biology or
societal changes following fashions and trends in the economy.

2. Zeldovich–Kompaneets diffusion with time modulation

Let us consider one-dimensional nonlinear diffusion
∂f

∂t
=

∂

∂x

(
D

∂f

∂x

)
, (3)

where the coefficient D is given by (1) and (2). Thus the equation of diffusion
reads

∂f

∂t
= a

∂

∂x

(
fn ∂f

∂x

)
. (4)

The dimension of f is [f ] = 1 cm, the dimension of ∂
∂x

(
fn ∂f

∂x

)
is 1/cmn+3. Because

the dimension of the left-hand side is (1/s)(1/cm), the dimension [a]= cmn+2 (1/s).
Let us introduce a non-dimensional variable

ξ =
x

A
1

2+n

, (5)

where

A = A(t) =
∫ t

0

a(τ)dτ (6)

and look for the solution in the form

f =
1

A
1

2+n

ϕ(ξ). (7)

As ∂ξ/∂t = −(aξ)/[(2 + n)A] and ∂ξ/∂x = 1/A
1

2+n we get subsequently
∂f

∂t
= − 1

2 + n

a

A
1

2+n +1

(
ϕ + ξ

∂ϕ

∂ξ

)
,

∂f

∂x
=

1

A
2

2+n

∂ϕ

∂ξ

and
∂2f

∂x2
=

1

A
3

2+n

∂2ϕ

∂ξ2
.

Further
∂

∂x

(
ϕn ∂ϕ

∂x

)
=

1

A
n+3
2+n

∂

∂ξ

(
ϕn ∂ϕ

∂ξ

)
.

These relations permit to reduce Eq. (4) to the form
∂

∂ξ

[
(2 + n)ϕn ∂ϕ

∂ξ
+ ξϕ

]
= 0. (8)

This ordinary differential equation has a solution

ϕ =
[

n

2(2 + n)
(
ξ2
0 − ξ2

)]1/n

, (9)

where ξ0 is a constant of integration. For n > 0 this formula gives the probability
density distribution in the interval between the points x = ±x0 corrresponding at
every instant to the equations ξ = ±ξ0:
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x0 = A
1

2+n ξ0 (10)
with A given by (6). Outside the interval f = 0. If coefficient a in (1) is a constant,
then A = at and the diffusion density expands with time as x0 ∝ t1/(2+n).

3. Initial value problem

Let at the initial instant t = 0, the diffunding particle be at x = 0 while
f(x, 0) = 0 elsewhere. Thus

f(x, 0) = δ(x) (11)
and at subsequent instants the density distribution spreads according to (7)
and (9). The integration constant ξ0 in (9) is given by normalization

∫ x0

−x0

fdx =
1

A
1

2+n

[
n

2(2 + n)

]1/n ∫ x0

−x0

(
ξ2
0 − ξ2

)1/n
dx = 1, (12)

which leads to appearing the Euler beta function B(x, y). We get
∫ x0

−x0

(
ξ2
0 − ξ2

)1/n
dx = ξ

2
n
0 x0

∫ 1

0

t−
1
2 (1− t)

1
n dt = ξ

2
n
0 x0 B

(
1
2
, 1 +

1
n

)
,

which inserted into (12) gives

ξ2+n
0 = 2

(
2
n

+ 1
)

B−n

(
1
2
, 1 +

1
n

)
. (13)

Hence expression (7) takes the form

f =
1
x0

1
B( 1

2 , 1 + 1
n )

(
1− x2

x2
0

)1/n

. (14)

Function B can be written in terms of the Euler Γ function

B

(
1
2
, 1 +

1
n

)
=

Γ ( 1
2 )Γ (1 + 1

n )
Γ ( 1

2 + 1 + 1
n )

.

From (13) we obtain

ξ2+n
0 = 21−n(2 + n)1+n Γn( 1

2 + 1
n )

nπn/2Γn( 1
n )

, (15)

where relations Γ (1
2 ) =

√
π and Γ (x + 1) = xΓ (x) were used.

4. Moments of the distribution

The second moment or the variance is given by

σ2 =
∫ x0

−x0

x2fdx, (16)

where f = f(x, t) is given by (14). We get

σ2 =
n

2 + 3n
x2

0 =
n

2 + 3n
A

2
2+n ξ2

0 , (17)

where Eq. (10) was used.
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The fourth reduced moment or the kurtosis

κ =
1
σ4

∫ x0

−x0

x4fdx = 3
2 + 3n

2 + 5n
(18)

is always for n > 0 less than 3, the value for the case of linear diffusion, n = 0.

5. Linear diffusion

For n → 0 we have ξ0 → 2/
√

n. Moreover, in this limit B
(

1
2 , 1 + 1

n

) → √
πn

because limn→0 Γ
(

1
n

)
/Γ

(
1
n + 1

2

)
=
√

n, cf. [3], and the solution given by formula
(9) is

f =
1
2

1√
πA

lim
n→0

(
1− x2

4A
n

)1/n

=
1
2

1√
πA

exp
(
− x2

4A

)
. (19)

For n → 0 we have a → D and A → Dt. Therefore we regain

f =
1
2

1√
πDt

e−
x2
4Dt , (20)

which is the solution of diffusion equation for a linear case.
The variance for this case is given by (17) with n → 0 and ξ0 → 2/

√
n.

Moreover, because a = D for n = 0

σ =
∫ x0

−x0

x2fdx = 2Dt. (21)

It is the Einstein result for the mean square displacement in linear Brownian
diffusion.

6. Wigner semicircle distribution

This distribution arises as the limiting distribution of eigenvalues of random
symmetric matrices as the size of the matrix goes to infinity, cf. [4], and in our
discussion is obtained for n = 2. The solution (7) takes the form

f =
1

2A1/2

√
x2

0 − x2 (22)

with x2
0 = 4

π A1/2. For a = const we have A = Dt and

f =
1

2
√

Dt

√
4
π

√
Dt− x2. (23)

The variance of this function is σ = x2
0/4 = 1

π A1/2 and the kurtosis κ = 2.

7. Discussion

According to Eq. (17)

σ2 ∝ A
2

2+n . (24)
If a = const, A = (at)

2
2+n and the power is always less than 1 for n > 0, which

means that we really deal with subdiffusion.
Such behaviour of limited diffusion is observed in porous media, it reveals in

limited growth of colony of bacteria or clump of grass, and in another collective
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behaviours [5–7]. Diffusional mobility in the cytoplasm of living cells strongly
decreases with an increasing radius of the tracked particle, and leads to cellular
phenomenon known as molecular crowding [8]. In economics, investors with small
capital cannot practically get in the market. Market saturation in which a product
cannot be further distributed (diffused) is also known. Well determined boundaries
of towns and villages in their historical development suit this model, cf. also [9].
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