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A model of social network construction taking into account both social

and individual influences on the distribution of links is proposed. The bal-

ance between social and individual factors is regulated through a “flexibility”

parameter, reflecting how strong the initial individual sociability is altered

by groups structure. The main interest is focused on the effect of groups

on degree–degree correlation. Both numerical and analytical results on the

relationship between assortativity and flexibility are presented.
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1. Introduction

Networks are the backbone of social structure. The long tradition of social
network research in sociology has been recently supported by statistical physics
community [1–4]. New models and measures of complex networks have been ap-
plied successfully to social networks [5–9]. The question has been raised about
differences between social networks and other types of networks — are they dif-
ferent only because of the properties of their nodes, or maybe there is a difference
that can be detected in a network structure? Newman and Park [10], basing on
empirical evidence, posited that social networks are characterized by positive as-
sortativity [11, 12], while for other network types assortativity is zero or negative.
Whitney and Alderson [13, 14] showed with expanded empirical evidence that
data do not fully support this hypothesis. Further progress in this debate was
reached through specific models (mechanisms) showing how positive assortativity
is generated in social networks [10, 11, 15–19].

In this article we focus on the effect of groups on social network structure
which as has been shown by Newman and Park [10] can lead to positive assortativ-
ity. However, the model proposed in [10] reflects only one psychological mechanism
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of relationships’ formation. In their model, the group structure fully controls indi-
viduals’ properties in such a way that every person is connected to a given fraction
p of other common group members, and is not connected to anyone outside. Such
framing has two major consequences if the situation is interpreted in social terms.
Firstly, every person only maintains in-group relations and does not connect to
non-members — therefore getting new social contacts can occur only through join-
ing groups. The second consequence of Newman and Park model is related to the
infinite flexibility of their nodes — if the group is big enough and p value is high,
each node may end up with thousands and thousands of connections. It is very
unlikely to maintain so many social ties because maintaining them does consume
cognitive resources that are limited — people cannot infinitely increase the number
of relationships∗.

The goal of this paper is to introduce more psychologically realistic rules for
how groups affect network structure. What we understand as “groups affecting
network structure” in this case is that belonging to a group offers opportunities
to form social ties with other group members with fairly high probability.

We propose a new model where individuals are only to a certain degree
affected by the groups they belong to, but also their individual characteristics are
taken into account. The individual characteristics are conceptualized as a pre-set
node degree. In other words — pre-set node degree reflects that every person has
an inborn tendency to socialize — ranging from recluses to “party animals”. The
flexibility parameter in our model allows people to change their individual inborn
tendency and use social opportunities (here manifested as group membership) to
change the number of relationships. To simplify the algorithm we set the level of
flexibility as uniform for the population.

The paper is organized as follows. In the next section the concept of assorta-
tivity is briefly reviewed. In Sect. 3 we present our model of network construction.
In Sect. 4 we present the numerical results of how network assortativity depends
on individuals’ flexibility. We explain the obtained effects using analytical calcu-
lations for a simplified model.

2. Assortativity

The network is called assortative if it exhibits positive degree–degree corre-
lation. There are two commonly used measures of assortativity. One possibility is
to measure the mean degree of nearest neighbors of a node as a function of node
degree, referred to as nearest neighbor average connectivity (neighbor connectiv-
ity) [21, 22]:

∗For example, data from the International Social Survey 2001 [20] indicate that the
average number of friends remains fairly small (number of friends at work place µ = 2.16,
σ = 5.00; number of friends living near you µ = 3.30, σ = 7.26; number of other close
friends µ = 6.10, σ = 11.55).
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knn(k) =
∑

k′
k′Pr(k′|k), (1)

where Pr(k′|k) is the conditional probability that a node of degree k (k-node) is
connected to k′-node. If the curve (1) falls, the network tends to be disassortative
whereas ascending curve indicates assortative behavior. Another possible measure
is assortativity coefficient, r, introduced as a normalized (ranging in [−1, 1]) con-
nected degree–degree correlation function. For a given network of M edges, r is
calculated as follows [11]:

r =
M−1

∑
i jiki −

[
M−1

∑
i(ji + ki)

]2

M−1
∑

i
1
2 (j2

i + k2
i )− [

M−1
∑

i
1
2 (ji + ki)

]2 , (2)

where ji and ki are the degrees of nodes at the end of i-th edge, i = 1, 2, . . . , M.

3. Description of the model

The central idea of Newman and Park model [10] is that node degree is equal
to a fixed fraction p of nodes in all groups to which the given node belongs. As
it has been motivated in Sect. 1 our model combines inborn characteristics of an
individual (pre-set degree) with tunable influence of its social environment. The
network construction proceeds in the following steps:

1. Assign node degrees according to pre-set node degree distribution. There
are N nodes in the system. Each node is assigned its pre-set node de-
gree Dpre−set

i from degree distribution d, common for all nodes, dpre−set
k =

Pr(Dpre−set
i = k), k = 0, 1, 2, . . . These degrees can be modified later de-

pending on node flexibility.

2. Assign node group degrees according to affiliation distribution. The model
allows for multiple group affiliations, that is, one node can belong to none,
one or many groups. Each node is assigned its node group degree Ai from
the affiliation distribution a, common for all nodes, i.e. aj = Pr(Ai = j),
j = 1, 2, . . . In this article the analysis is restricted to the case where each
node belongs to at least one group.

3. Create groups and assign nodes to groups. NG groups are created and nodes
are assigned to groups randomly (each group is equally probable) to match
each node’s group degree distribution.

4. Adjust node degree based on its flexibility. Flexibility makes it possible to
manipulate to what extent nodes change their degrees in the process of link
formation, as this ability may vary from no change at all (nodes maintain
their initial degree regardless the number of potential “friends” in groups
they belong to) to extreme flexibility (nodes change their initial degree to
match the number of potential “friends” in groups they belong to). We
introduce flexibility as a parameter f ranging from 0 to 1. Let node i be
assigned to Ai groups: Gi1, Gi2, . . . , GiAi , then its resulting degree equals
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Di =


(1− f)×Dpre−set

i + f ×



N∑

j=1

1Gi1∪Gi2∪...∪GiAi
(j)− 1)





 ,(3)

where 1 is an indicator function and [x] denotes the nearest integer to x. We
shall denote dk = Pr(Di = k), k = 0, 1, 2, . . .

5. Create links. Links are created using a modification of the algorithm for
the construction of configuration network [23, 24]. The difference is that
nodes that belong to the same group have higher probability (so-called
in-group probability, pin) of being connected to each other. Nodes that do
not share a group affiliation also may be linked, but the probability (out-
group probability, pout) is significantly smaller than pin.

4. Numerical results

Within this paper we examine the mechanism of flexibility. We establish
the total number of nodes N (the simulations are performed for N = 1000).
The pre-set degree is drawn from generalized zero-truncated Burr distribution,
Burr(x0, B, c, k) characterized by four parameters: location x0, scale B, and shape
c, k† (Fig. 1). Figures 1 and 2 present assortativity coefficient (2) as a function of
flexibility for three different values of NG. Our intuition prompts that if all nodes
adjust their degrees to the sizes of their groups, the degree correlation increases.
Indeed, if we do not allow multiple affiliation, degree-correlation versus flexibil-
ity is an ascending curve, see Fig. 1, top. However, as soon as nodes can be
assigned to more than a single group, it is clearly seen that assortativity is not
trivially related with flexibility, see Fig. 1, bottom. For multiple affiliations all
curves exhibit a peak for some intermediate value of f. It suggests that there are
two competing mechanisms related to flexibility that affect degree-correlation. On
the one hand, the mechanism of adjustment to the group size is necessary so that
the network exhibits assortativity. The second mechanism is related to an effect
of multimodal (“torn”) distribution of resulting degree distribution. For multi-
modal we understand that some intermediate values between modes have very
low probability. This effect is especially strong for small number of groups NG.

For high values of f the pre-set degree becomes irrelevant, the degree distribution
depends on the size(s) of group(s) that given node is assigned to. The probability
to be assigned to a given group is given as p = (a1 + 2a2NG + 3a3 + . . .)/NG

and therefore the distribution of the group size is Poissonian with intensity (mean
value) λ = Np = N〈A〉/NG, where 〈A〉 denotes the average number of affiliations.
Clearly, λ increases with decreasing NG but the ratio of the standard deviation
to the mean value decreases as λ−1/2. The degree distribution is approximately
concentrated around λ, 2λ, . . . The distance between λ and 2λ, 2λ and 3λ, . . .

†The cumulative distribution function is of the form F (x) = 1− [
1 +

(
x−x0

B

)c]−(k+1)

for x > max(0, x0).
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Fig. 1. Assortativity coefficient as a function of flexibility. Top plot: single affili-

ation, a1 = 1; pout = 0.01, pin = 1. Bottom plot: multiple affiliation distribution,

Burr(0.5,1.5,3,4), pout = 0.01, pin = 1.

Fig. 2. Histograms of pre-set (white boxes) and resulting (gray) degree distribution

for NG = 20, N = 1000, multiple affiliation distribution Burr(0.5,1.5,3,4), pout = 0.01,

pin = 1. Top plot: f = 0.5; bottom plot: f = 1.
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is covered by λ1/2 standard deviations. Thus, increasing λ results in multimodal
character of degree distribution, see Fig. 2. We attempt to clarify how multimodal-
ity affects assortativity in the section to follow.

5. The effect of bimodality

In this section we simplify the assumptions and study the effect of multi-
modal distribution on assortativity, in particular neighbor connectivity (1), using
analytical approach. First let the affiliation distribution be supported in two points
only, i.e. a1 + a2 = 1. Moreover, let f = 1, pout = 0, pin = 1. We shall derive the
analytical form of (1) and examine its behavior in relation to bimodality of node
degree distribution. Let us denote by j1(k) and j2(k) the mean degree of neighbors
of a k-node that belongs to one group and two groups, respectively. Then knn(k)
may be expressed as j1(k)w1(k)+j2(k)w2(k), where w1(k) and w2(k) are appropri-
ate weights representing probabilities that k-node belongs to one (w1) or two (w2)
groups. In order to assign weights w1 and w2 we need the formula for node degree
distribution. The group size is Poissonian with intensity λ = N(a1 + 2a2)/NG.

Immediately, the sum of the sizes of two groups is also Poissonian with doubled
intensity. However, the groups may overlap and the distribution of the overlap
size is also Poissonian with intensity λ′ = 2a2N/[NG(NG−1)]. If a k-node belongs
to two groups and the overlap of these groups contains i nodes (which is at least
one node and at most k + 1), then the sum of the sizes of these groups n1 and n2

equals n1 + n2 = k + 1 + i yielding,

dk = a1p̃1(k + 1; λ) + a2

k+1∑

i=1

p̃k+1
1 (i; λ′)p̃2i(k + i + 1; 2λ). (4)

We use the notation p̃(i, λ) to denote Poisson probability function with inten-
sity λ, i.e. p̃(i, λ) = exp(−λ)λi/i! and p̃L

K(i, λ) = p̃(i, λ)/
∑L

j=K p̃(j, λ) to express
truncated Poisson distribution, supported in {K,K + 1, . . . , L} (if L is infinite we
simply write p̃K(i, λ)). Consequently,

knn(k) = j1(k)
a1p̃1(k + 1; λ)

dk
+ j2(k)

a2

∑k+1
i=1 p̃k+1

1 (i; λ′)p̃2i(k + i + 1; 2λ)
dk

. (5)

Now, we focus on j1 and j2. First, note that the proportion of nodes within a
group that belong to one and to two groups, say α1 and α2, does not coincide with
the affiliation distribution a1 and a2. Indeed, there is on average N(a1 + 2a2)/NG

nodes in a group and there is on average Na1/NG nodes with a single affiliation
per group, thus α1 = a1/(a1 + 2a2). Let us note that all neighbors of the node
belonging to single group are in neighborhood relation with one another. More-
over, α2 of them have on average λ− i additional neighbors in some other group,
namely

j1(k) =
1
k

k+1∑

i=1

p̃k+1
1 (i;λ′)

[
k2 + α2k(λ− i)

] ≈ k + α2

(
λ− λ′∑k+1

j=1 p̃(j; λ′)

)
. (6)

The formula that approximates j2(k) is more complicated



How Nodes and Groups Properties Influence . . . 603

j2(k) =
1
k

k+1∑

i=1

p̃(i;λ′)∑k+1
j=1 p̃(j;λ′)

k+1∑

n1=i

Pk(n1, i)Ak(n1, i), (7)

where

Pk(n1, i) =
p̃k+1

i (n1; λ)p̃k+1
i (k + 1 + i− n1;λ)∑k+1

n=i p̃k+1
i (n; λ)p̃k+1

i (k + 1 + i− n; λ)
(8)

reflects the probability that for given overlap i a k-node is affiliated to two groups
of sizes n1 and n2 = k + i+1−n1. In Ak(n1, i) we sum up the degrees of k-node’s
neighbors, i.e.

Ak(n1, i) = (n1 − i)(n1 − 1) + (n2 − i)(n2 − 1) + (i− 1)k

+[(k + 1 + i)α2 − 2i](λ− 1).

In the two first summands we exclude the overlap and sum up all the neighbors
that nodes have within their own group. Additionally, α2 of all nodes belong to
two groups: all nodes in the overlap have k neighbors (third summand) and all
nodes outside the overlap have on average λ− 1 additional neighbors.

We obtain the analytic form of neighbors connectivity if we combine (6)
and (7) in (5). The saw-like shapes of neighbors connectivity, and simultaneously
small values of assortativity coefficient, are particularly distinct for small values
of NG. The values of w1 as a function of k are presented in Fig. 3 (dotted lines).
As the number of groups decreases w1(k) exhibits a sharp fall from 1 to 0 which
is related to strongly bimodal character of degree distribution. Moreover, the
difference between the values of j1(k) and j2(k) for k near the fall of w1 exhibits
the tendency to decrease as NG increases, see Fig. 3.

6. Conclusions

We have shown that group structure can lead to positive assortativity with
psychologically sound network construction rules. The crucial parameter in our
model is individuals’ flexibility controlling the balance between social and individ-
ual influences on the number of links. Degree correlation is initially growing with
flexibility as flexibility allows individuals to adjust their degrees, which leads to the
situation where group members have similar degrees. Together with higher proba-
bility of in-group link formation it increases degree correlation. On the other hand,
high flexibility splits degree distribution because, on average, individuals belong-
ing to one group have lower degree than individuals belonging to two groups, and
they have lower degree than individuals belonging to three groups etc. This creates
modes in degree distribution consisting with individuals belonging to one, two or
more groups. Once such almost-separate modes are created degree correlation is
declining because of the saw-like shape of the average neighbors’ degrees.

The debate whether positive assortativity is specific only for social networks
may not be fully resolved soon. We hope that this article can contribute to this
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Fig. 3. Left: histograms of degree distribution and corresponding theoretical dk. Right:

analytical (solid line) and numerical (+) results for knn(k). Analytical values of w1(k)

(dotted line): the w1 scale is indicated on the right side of the plot; the corresponding

values of assortativity coefficient are noted in the top middle part.

debate by showing how positive assortativity can be derived from network creation
rules based on group and individual properties.
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