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The phenomenon of epidemic spreading in a real social network is

described and investigated numerically. On the basis of data concerning

amount of time devoted daily to social interactions, the influence of human

activity on spreading process is investigated in the frame of SIRS model. It

was found that the activity of an individual is positively correlated with its

connectivity and the relation has power law form. The influence of control

measures on the spreading process is investigated as a function of initial con-

ditions. The cost-effectiveness of mass immunizations campaigns and target

vaccinations is compared. It was found that the form of activity distribution

has significant influence on the spreading phenomena in the network.

PACS numbers: 89.75.–k, 89.65.–s, 87.10.–e

1. Introduction

In recent years it was discovered that a structure of different biological, tech-
nical, economical and social systems has the properties of complex networks [1].
The short length of the average shortest-path distance and the high value of the
clustering coefficient are some of the common properties of those networks. Social
networks, which are an important example of complex networks, also have those
properties. They are successfully modeled using different approaches [2, 3], in par-
ticular, small-world topology of interpersonal connections, and their hierarchical
structure are taken into account, e.g. epidemic spreading in a population with a
three-level structure of interpersonal interactions was analyzed in Ref. [4]. Such a
structure of a social network has a strong influence on dynamical phenomena in a
population.

In recent years the spreading of epidemics was investigated by many authors,
who used different models of interpersonal interactions [5–7]. Different approaches
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to generation of graphs with desirable properties, e.g., a degree distribution or
correlations between nodes connectivity, were used [2].

Human activity has essential influence on the dynamical phenomena (e.g.
epidemic spreading, opinion formation) in social networks [8]. In the present work
we use data on real social network consisting of 104 individuals, who interact in a
large virtual world of Massive Multiplayer Online Role Playing Game (MMORPG)
[9]. This network has similar properties to other social networks. It should be
stressed that social interactions with other players are very important part of each
MMORPG. Moreover, on-line games, like MMORPGs, offer a great opportunity
to investigate human behavior, because much information about individuals is
registered in databases. On the basis of the playing time received from the on-line
game server, we observe human dynamics [10]. We calculate the activity A of
individuals, i.e. the relative time daily devoted to interactions with others. It was
often assumed in models of epidemic spreading that intensity of interactions with
others is the same for each individual. Our research has shown that distribution of
activity is not uniform and is highly correlated with node degree. The aim of this
work is to investigate process of the epidemic spreading (on the basis of susceptible
infected removed susceptible SIRS model) in the real social network, taking into
account human activity.

2. The structure of the network and human activity

The population consists of N = 6065 individuals. The network under inves-
tigation is a Giant Component of the network described in Ref. [9]. A high value
of the clustering coefficient C = 0.1 and a short average path length 〈l〉 = 4.8
are characteristic features of social networks [2]; they are typical of small-world
networks [11]. The degree distribution of the network shows power law regime
P (k) ∼ (k + k0)−γ with k0 = 6 and γ = 3. Such a power law is common in
many types of networks [1], also in social networks [12]. The correlation between
the local clustering coefficient C(k) and the node degree k show the existence of a
power law C(k) ∼ k−α with α = 0.44. The power-law relation C(k) is similar to
the relationship observed in hierarchical networks [13]. The average connectivity
of the nearest neighbors kNN of a node increases with number of its connections k.
Hence, the network under investigation is assortative mixed by degree; such a
correlation is observed in many social networks [3].

It was found that the activity distribution can be fit to an exponential form
P (A) ∼ e−12A. The relation between degree of an individual and its activity shows
that the greater the k, the greater the A. Hence, the activity of an individual is
positively correlated with its connectivity and the results can be approximated
with power law A(k) ∼ k0.35. Knowing the activity of individuals we can start to
investigate the process of the epidemic spreading in the real social network.



The SIRS Model of Epidemic Spreading . . . 591

3. Epidemic spreading

In the literature there are many models of epidemic spreading with different
mechanisms of contagion [4, 14]. However, in order to better understand the
influence of human activity on spreading process we have used simple SIRS model
[5, 15]. In our model, each individual is in one of three permitted states: healthy
and susceptible (S), ill (I), healthy and unsusceptible or isolated from the rest of
the population (R). The state of the individual evolves in time and depends on
their previous state and the contacts with other individuals. The probabilities
of transitions between different states in one time step are described with the
following parameters: WS→I, the probability that a susceptible individual will
be infected by an ill individual (this also denotes how contagious the disease is);
WI→R, the probability that an ill individual will recover or be isolated from the rest
of the population (e.g. in a hospital); WR→S, the probability that an unsusceptible
individual loses its immunity and becomes healthy and susceptible (this value may
be referred to the probability of the mutation of the pathogen).

To distinguish the effectiveness of interactions between individuals we take
into account human activity A. We assume that the probability of an infection of
an individual by one of k neighbors in one time step (one day) is a simple linear
function of the number of ill neighbors and has a form

pi = 24WS→IAi

kI
i∑

j

Aj , (1)

where pi is probability of infection per one day, WS→I is the probability of infection
per one hour of contact, kI

i is the number of ill neighbors of i-th individual, Ai

social activity of i-th individual. Other probabilities of a transition between states
X, Y in one time step do not depend on structure of the network and human
activity and they are described by the parameters WX→Y .

Computations were performed for the initial conditions with one ill (I) and
randomly located individual and the rest of the population healthy and suscep-
tible (S). Synchronous dynamics with assumption that an individual can change
its state only one time in each time step was used. In order to investigate the
dynamics of the spreading process and the range of an epidemic we introduce two
observables: the time tmax when the maximal number of ill individuals is reached
and the magnitude of epidemic V defined as relative number of individuals who
went through the disease during epidemic.

In order to investigate the influence of target vaccination on the process of
epidemic development we introduce the parameter pTV. In each time step all S
nearest neighbors of the ill individual, are vaccinated with the probability pTV.
After vaccination, these individuals become unsusceptible (R) (to simplify the
model we assume that the time necessary to develop immunity is very short —
no longer than one day). It should be noted that introducing the probability
pTV can be also treated as a simple model of chemoprophylaxis [16]. The value
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of the probability pTV is related to the time of identification of ill individuals in
population by health services.

The relation between control parameters describing a disease and observables
(V and tmax) is shown in Fig. 1. In order to investigate the influence of the human
activity on the spreading process we have made computations for two different
distributions of activity, real and uniform Ai = const. The average activity was
the same in both distributions, with the aim of obtaining better comparable results.

Fig. 1. The influence of the parameter WS→I on the magnitude of epidemic V (a) and

time tmax (b) for different values of WI→R (0.1 — boxes and 0.9 — triangles). Black and

white marks correspond to uniform and real distribution of activity, respectively. Results

were averaged over 104 independent simulations. The values of the other parameters

are: WR→S = 0.

For large values of WI→R the magnitude of epidemic V increases with an
increase in WS→I. In the case of real distribution of activity V is much larger and
the value of the time tmax is lower. Hence, epidemic spreads faster and reaches
larger part of the network. It is a result of the presence of very active super-
-spreaders [17], i.e. individuals with large connectivity and high value of social
activity A. The process of epidemic is highly influenced by super-spreaders, be-
cause the probability that they are connected is large (the network is assortative
mixed by degree). These individuals cause that epidemic reaches distant part of
the network very fast, even in the case of low contagious diseases. In the case
of uniform distribution of activity super-spreaders are less effective, because their
social activity A is smaller (the activity of a node is positively correlated with its
degree). Therefore the epidemic cannot spread in the network (the magnitude of
epidemic is close to zero for low values of WS→I).

For low values of WI→R the decrease in time tmax is visible, hence the epi-
demic spreads faster with an increase in WS→I (see Fig. 1b). The magnitude of
epidemic remains large, even in the case of low contagious diseases. As a result
of the presence of more active super-spreaders in the case of real distribution of
connectivity, the magnitude of epidemic is larger.

However, for large values of the WS→I opposite situation is true if the mag-
nitude of epidemic is larger in the case of uniform distribution of activity. On
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one hand, the social activity of an individual with small number of connections
is low, therefore the probability that such an individual will be infected is very
low. On the other hand, the hubs, which are highly interconnected (the network
is positively correlated by degree) and very active, quickly spread the disease to
the other hubs. Thus, the epidemic spreads faster (see Fig. 1b), but quickly dies
out. As a result, the probability that an individual with low k and low A will be
infected during the epidemic is low. Therefore, the magnitude of epidemic is lower
in the case of real distribution of activity, because the number of individuals with
low k and A is large.

In order to investigate the influence of routine preventive vaccination on the
spreading process, at the time t = 0 the state of NR0 randomly chosen individuals
is set to (R). With an increase in the number of preventively vaccinated individuals
NR0, there is a decrease in the magnitude of epidemic (Fig. 2). This is so because
an epidemic cannot spread freely in the presence of vaccinated individuals. In
the case WR→S > 0 the behavior of the system is more complicated. There is
a non-zero probability PE of occurrence of an endemic state (we define PE as a
probability that after 104 time steps the number of ill or infected individuals is
greater than zero). In the case of real distribution of activity the presence of very
active super-spreaders causes an increase in probability PE. Moreover, the value of
the probability PE decreases much slower with an increase in NR0. Therefore the
magnitude of an epidemic increases abruptly with an increase in WR→S, and V is
relatively large even if almost whole population was vaccinated. It indicates that
mass routine vaccination is not optimal in the case of easily mutating pathogens.

Fig. 2. The influence of the number of preventive vaccinated individuals NR0 on the

magnitude of epidemic V for different values of WR→S (0 — boxes and 0.0015 — tri-

angles). Black and white marks correspond to uniform and real distribution of activity,

respectively. Results were averaged over 104 independent simulations. The values of the

other parameters are: WS→I = 0.3, WI→R = 0.3.

The routine preventive vaccination is not the only method of using vaccines.
In our work, we also investigated the influence of target vaccination [18]. Figure 3
illustrates the influence of the probability pTV on the spreading process (in the
simulation we assume that there was no shortage of vaccines). The magnitude
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of epidemic decreases with an increase in pTV. It is visible that in the case of
real distribution of activity the value of V is greater. Moreover, it decreases
much slower with an increase in pTV than in the case of uniform distribution
of connectivity. The difference in results for different distributions of activity is
better visible for larger values of the parameter WR→S.

Fig. 3. The influence of the probability pTV on the magnitude of the epidemic V

(a) and the number of vaccinated individuals NV (b) for different values of WR→S

(0 — boxes and 0.25 — triangles). Black and white marks correspond to uniform and

real distribution of activity, respectively. Results were averaged over 104 independent

simulations. The values of the other parameters are: WS→I = 0.3, WI→R = 0.3.

Because of the cost of vaccines, it is important to calculate the number NV

of individuals who are vaccinated (Fig. 3b). Although in our model we assume
unlimited supplies of vaccines, during a real epidemic a shortage of vaccines is quite
likely. The value of NV decreases with an increase in pTV and is greater in the case
of real distribution of activity. When the new ill individuals are identified quickly
enough (large values of pTV) an epidemic can be suppressed with relatively small
numbers of vaccines, even if the probability that an individual loses its immunity
is large. In our simulations we assumed that in time t = 0 only one individual is
infected. In the case when the number of initially ill individuals is large (e.g. as
result of broad dispersal of pathogens during bio-terrorist attack) even very quick
identification of new ill individuals (pTV ≈ 1) is insufficient: the magnitude of the
epidemic and the number of vaccines used remain relatively large [18].

4. Conclusions

We have shown that human activity has significant influence on dynamic
processes in social network. It was found that the activity A of an individual (i.e.
the relative time daily devoted to interactions with others) is positively correlated
with its degree. The process of an epidemic spreading in a real social network has
been investigated numerically. It occurs that in the case of real distribution of
activity the epidemic spreads faster and for a large range of values of the control
parameters the magnitude of epidemic is larger. This is a result of the presence of
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very active super-spreaders (individuals with high degree and large value of social
activity) in the social network. It should be stressed that in the case of an epidemic
in a real population the pattern of human behavior will change. In time of severe
epidemic people decrease the time devoted daily to interactions with others (social
activity A) in order to avoid an infection. However, we suggest that in the case
of limited epidemics (low values of WS→I), when the number of ill individuals is
relatively low (e.g. annual influenza epidemics), the change in social activity is
small, too. Therefore, we suggest that the models taking into account data on
social activity of humans presented in this work seem to be more plausible for
modeling the process of epidemic spreading in human population than previous
models presented in literature.

In our model, the influence of routine preventive vaccinations on the spread-
ing of an epidemic was investigated. We found that the use of routine preventive
vaccinations can suppress an epidemic. However, the vaccine coverage is very high.

Contrary to routine preventive vaccination, target vaccination can give much
better results with little demand for vaccines (or antiviral agents), i.e. when
only the nearest neighbors of ill individuals are vaccinated. An epidemic can be
suppressed with a relatively small number of vaccines if new ill individuals are
identified quickly enough. However, it is not easy to identify super-spreaders in
the community.

Routine preventive vaccination can be effective only in the case of well known
pathogens (e.g. in the case of childhood diseases such as measles). If a new
pathogen appears in a susceptible population (as a result of mutation or a bio-
terrorist attack), only a quick public health response can provide good results.
In such case, the efficiency of target vaccination of the nearest neighbors of ill
individuals is high.

Our model provides an opportunity to study the influence of routine pre-
ventive vaccination as well as targeted vaccinations on the spread of an epidemic,
taking into account real distribution of human activity coming from on-line com-
munity. This is of particular interest since these measures are frequently imple-
mented in practice.
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