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We study the inter-stock correlations for the largest companies listed on

Warsaw Stock Exchange and included in the WIG20 index. Our results from

the correlation matrix analysis indicate that the Polish stock market can be

well described by a one-factor model. We also show that the stock– stock

correlations tend to increase with the timescale of returns and they approach

a saturation level for the timescales of at least 200 min, i.e. an order of

magnitude longer than in the case of some developed markets. We also show

that the strength of correlations among the stocks crucially depends on their

capitalization. These results combined with our earlier findings together

suggest that now the Polish stock market situates itself somewhere between

an emerging market phase and a mature market phase.

PACS numbers: 89.20.–a, 89.65.Gh, 89.75.–k

1. Introduction

Since the pioneering work of Markowitz in 1950s [1], the financial cross-
-correlations are constantly a subject of extensive studies both at the theoretical
and practical levels due to their fundamental relation to risk management and port-
folio investing. In the field of econophysics, an interest in this type of correlations
arose after it had been shown that they can be described [2–4] in the framework
of random matrix theory (RMT) [5], expressing both a kind of universality and
significant deviations from it. Stock market cross-correlations are typically quanti-
fied in terms of a correlation matrix, created for a set of N time series representing
returns of different stocks. From this point of view, evolution of a stock market
can be decomposed into N independent modes associated with eigenvalues of the
correlation matrix. It occurs that a vast majority of these eigenvalues are con-
cordant with the eigenvalue distribution of the relevant random matrix ensemble
(the Wishart ensemble) [2, 6], which according to a common belief suggests that
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these RMT modes do not carry any market-specific information beyond being a
pure noise. Validity of this belief, however, has recently been challenged in some
works [7]. As regards the remaining minority of the eigenvalues which deviate
from the RMT predictions, there is a general agreement that they express the
actual non-random linear dependences between the price fluctuations of different
assets. Their particular number depends on a market and the number of analyzed
stocks, but in each case there is an eigenvalue that strongly dominates, developing
an “energy gap” that separates it from the subsequent eigenvalues. This peculiar
eigenvalue is associated with a strongly delocalized eigenvector and is related to
a “market mode”, i.e. a collective evolution of large group of stocks that usu-
ally closely mimics evolution of the market’s global index. From this perspective,
magnitude of the largest eigenvalue reflects how collective is the evolution of an
analyzed market. If, apart from the largest eigenvalue, there are also other eigen-
values which do not agree with the RMT spectrum, they correspond to smaller
groups of interrelated stocks that can be usually identified with market sectors [4].
It has been found that the number of the non-random eigenvalues is highest for
the largest, mature markets like New York, London, Frankfurt etc., while the less
capitalized markets, e.g. the emerging ones, develop the spectrum which consists
of a strongly repelled eigenvalue and the bulk with only minor disagreements in
respect of the RMT prediction [8]. In fact, on small markets sectors and individual
companies are too weak to be considered an optimal reference for the investors.
Instead, the investors trade according to the behavior of the whole market or even
they blindly follow the moves of the world’s largest markets.

Here we analyze high-frequency data from the Warsaw Stock Exchange
(WSE) and inspect the correlation matrix eigenspectra calculated for a few se-
lected groups of stocks. We address the question whether the correlation proper-
ties of the Warsaw stock market still situate it among the emerging markets or,
conversely, it has already matured enough to be considered a developed market.
An inspiration for rising this question is the fact that the WSE evolution shares
some properties (like the broad multifractal spectra and the returns distributions
which can be fitted by the q-Gaussians) with the well-established markets, as our
earlier studies showed [9–11].

2. Methodology

Our tick-by-tick data covered the period from 17 November 2000 to 30 June
2005 and consisted of 39 stocks that were, at least temporarily, included during this
period in WIG20 index. WIG20 is a capitalization-weighted index comprising the
20 largest companies traded on WSE. Its composition changes from time to time
in order to reflect the current capitalization ranking of the WSE stocks. During
the forementioned time interval only 10 stocks were constantly included in WIG20,
while each of the remaining 29 stocks was contributing to WIG20 for a shorter
period due to falling in the capitalization ranking or being delisted from WSE.
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Fig. 1. Stocks included in WIG20 during the period 17.11.2000–30.06.2005, divided

into four groups N1, N2, N3, N4. See text for details.

Although it is associated with a relatively small number of companies,
WIG20 is considered the most important and influential index on WSE. This
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is because the companies included in WIG20 are viewed as belonging to a core of
Polish economy. Thus it is not unreasonable to expect that their statistical and
correlation properties differ, at least to some extent, from the properties of other
companies that are not a part of this index. Also a particular stock may change its
behavior after being included in or removed from WIG20. In order to investigate
this issue we divided our set of signals into 4 partially overlapping groups (see
Fig. 1):

(1) Group 1 of N1 = 29 signals associated with the stocks listed on WSE
over the entire period.

(2) Group 2 of N2 = 20 signals constituting WIG20 with changing stock
content according to the actual WIG20 basket composition; signals (at the level
of normalized returns) representing the replaced stocks were cut and joined with
the ones representing the replacing stocks.

(3) Group 3 of N3 = 10 signals for the stocks that were permanently included
in WIG20; these are also the companies with the largest capitalization.

(4) Group 4 of N4 = 10 signals representing the stocks with the least capital-
ization among the ones that were temporarily included in WIG20. We performed
our calculations for each of the above groups independently.

For each individual company α, α = 1, ..., Nk, from the raw tick-by-tick
data we extracted a time series of price evolution pα(ti), i = 1, . . . , T sampled
with 1 min frequency and calculated the corresponding returns according to the
usual definition: Gα(ti) = ln pα(ti + τ)− ln pα(ti), where τ is the time lag. After
normalizing the time series of returns to have unit variance and zero mean, the
resulting length of each signal was equal to T = 415,000.

From Nk time series we construct an Nk × T data matrix M and the corre-
lation matrix C that are related by

C = (1/T )MMT. (1)
By diagonalizing the correlation matrix

Cvj = λjv
j , (2)

one obtains a set of its eigenvalues λj , j = 1, . . . , Nk and eigenvectors vj = {vj
α}.

An ensemble of random matrices which can be used as a null hypothesis in
our context is the ensemble of the Wishart matrices. It offers an analytic expression
for a distribution of eigenvalues, known as the Marchenko–Pastur formula [12, 6].
Here we are interested in its upper λmax and lower λmin bounds only

λmax
min = σ2(1 + 1/Q± 2

√
1/Q), (3)

with Q = T/Nk ≥ 1 and time series variance σ2 = 1.

3. Results

Figure 2 shows the eigenvalue spectra for each of the 4 considered groups of
stocks; two time lags are used: τ = 10 min (top) and τ = 360 min, i.e. 1 trading
day (bottom). In accordance with the remarks done in the introductory section, for
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Fig. 2. Empirical eigenvalue spectrum of the correlation matrix C (vertical lines), cal-

culated for 4 group of companies over the period 17.11.2000–30.06.2005. Two timescales

are shown: τ = 10 min (top) and τ = 360 min = 1 day (bottom). According to RMT

predictions, eigenvalues of a Wishart matrix have to lie only within the shaded region.

all the groups and for both time lags the largest eigenvalue λ1 is repelled from the
RMT range defined by Eq. (3). Clearly, for Groups 1, 2, 3 the corresponding shift
is stronger than for Group 4. As regards the rest of the eigenvalues, they are close
to the random matrix region; the observed discrepancies between their position
and the RMT bounds can be attributed to the “squeezing” effect of large λ1

exerted on the smaller eigenvalues [2, 7] which are shifted towards zero. The larger
magnitude of λ1, the stronger is this effect. Agreement between the empirical
eigenspectrum and the RMT prediction can be significantly improved by removing
a mode associated with λ1 from the analyzed signals (see e.g. Ref. [7, 13]). The
largest eigenvalue is related to the temporal evolution of the market mode. As
we see in Fig. 2, practically no other eigenvalue considerably exceeds the RMT
upper bound λmax, which indicates that — besides the idiosyncratic fluctuations —
the market mode is the principal and unique factor responsible for the behavior of
individual stocks. A lack of other deviating eigenvalues is the evidence of weakness
of a sectorization in the WSE market.

The magnitudes of the largest eigenvalues for different groups of stocks can-
not be directly compared based on Fig. 2. This is because of a lack of a proper
normalization: the correlation matrices for different groups have different size and
different trace. Thus, in each case we divide λ1 by the matrix trace. As a result
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we obtain normalized values of λ1 expressing a fraction of the maximum possible
magnitude (equal to the matrix trace) that is absorbed by the largest eigenvalue.
It thus describes the “rigidity” of a given group’s temporal evolution. The corre-
sponding results are exhibited in Fig. 3. For both timescales, the largest normalized
magnitude of λ1 is observed for Group 3, comprising the largest companies perma-
nently listed in WIG20. The difference between this and other groups is especially
substantial for the larger timescale of 1 trading day (Fig. 3, bottom part). This
indicates that the stocks for the largest companies are particularly strongly cou-
pled with each other. Evidently smaller strength of collective movements can be
seen for Group 2 (representing the actual content of WIG20), which is associated
with the second-largest magnitude of λ1. The stocks within the remaining Groups
3 and 4 are relatively weakly correlated. In contrast to Groups 1 and 2, which at
each moment comprise the stocks belonging to the WIG20 basket, the stocks from
Groups 3 and 4 are not necessarily included in WIG20 during the whole studied
interval of time: at each particular moment some of them belong to WIG20 and
some of them do not. This also means that their capitalization is, on average,
smaller than the one for the stocks from Groups 1 and 2.

Fig. 3. Empirical eigenvalue spectrum of the correlation matrix C (vertical lines), cal-

culated for 4 groups of companies over the period 17.11.2000–30.06.2005. Two timescales

are presented: τ = 10 min (top) and τ = 360 min = 1 day (bottom).

By comparing the results in both parts of Fig. 3, one can notice that for
the longer timescale the eigenvalues assume larger magnitudes than do their coun-
terparts for the shorter timescale. This can be a manifestation of the Epps ef-
fect [14, 15], i.e. increase in market cross-correlations with increasing timescale of
the returns. In order to verify this supposition, we systematically inspected the
functional dependence of λ1 on time lag τ for a few distinct timescales 10 min
< τ < 900 min. Indeed, the results collected in Fig. 4 confirm that the observed
behavior of the largest eigenvalue is a consequence of the Epps effect. For all the
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Fig. 4. Functional dependence of λ1 on time lag τ for all analyzed groups of stocks.

groups, λ1 increases from small values for the shortest time lags to the group-
-specific saturation levels for τ > 200 min (compare with the American market
with similar saturation occurring for τ > 20 min). It is noteworthy that for
Group 3 and Group 4 and for τ = 10 min the largest eigenvalue is comparable in
size with the noise level (λmax) predicted by RMT. This outcome resembles the
analogous one obtained for the American stock market [15]: the smaller is the
capitalization of a group of stocks, the less internally correlated and more noisy is
the group’s evolution, which — in consequence with the Epps effect — leads to a
complete lack of actual inter-stock couplings for sufficiently short timescales. This
phenomenon is related to the fact that investors need some time to fully react to
new information and events on a stock market. Stocks of smaller companies are
traded less frequently than stocks of large companies and therefore the amount of
time needed to develop couplings between such stocks is considerably larger.

4. Summary

We investigated the inter-stock correlations for the relatively large compa-
nies traded on Warsaw Stock Exchange and included in the WIG20 index. We
divided the full set of stocks into 4 groups depending on a particular stock’s cap-
italization and a time interval in which the stock was included in WIG20. Our
results show that the Polish stock market can basically be expressed by a one-
-factor model with the fully developed couplings to occur at timescales longer than
half a trading day. Since these properties are characteristic of small and emerging
markets and since, on the other hand, the Polish market reveals some features
that are common to well-developed markets (q-Gaussian structure of the returns
probability density functions (p.d.f.s) [10], multifractality [11]), we arrive at the
conclusion that at present WSE is in a transition phase from being an emerging
market to becoming a fully-established one. Our analysis also proved that the
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strength of correlations among stocks crucially depends on their capitalization —
this effect is universal for all the markets investigated so far in literature.
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