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Non-symmetric rectangular correlation matrices occur in many prob-

lems in economics. We test the method of extracting statistically meaningful

correlations between input and output variables of large dimensionality and

build a toy model for artificially included correlations in large random time

series.The results are then applied to analysis of polish macroeconomic data

and can be used as an alternative to classical cointegration approach.
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1. Multivariate modeling of time series - setting the stage

Multivariate time series data are widely available in different fields like eco-
nomics, finance, medicine or telecommunication. Building efficient multivariate
models, which help understanding the relation between a large number of possi-
ble causes and resulting effects, is therefore crucial for many decision - making
activities.

Due to the works of Granger [1], Bollerslev [2] and Sims [3] vector autoregres-
sive (VAR) and vector GARCH (eg. BEKK, VEC) models are nowadays deeply
investigated especially in the field of econometrics. It is believed that the sys-
tem itself should determine the number of relevant input and output factors. The
”brute force” method involves taking all the possible input and output factors and
systematically correlate them, hoping to find some signal. One can easily con-
vince oneself, that VAR and Vector GARCH models work well for small number
of input and output variables, however suffer from the so called ”dimensionality
curse” i.e. blow up with just a few factors. The cross-equation correlation matrix
contains all the information about contemporaneous correlation in a Vector model
and may be its greatest strength and its greatest asset. Since no questionable a
priori assumptions are imposed, fitting a vector model allows dataset to speak for
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itself. Still without imposing any restrictions on the structure of the correlation
matrix one cannot make a causal interpretation of the results. We believe there
exist highly non-trivial statistically meaningful correlations between two samples
of non-equal size (i.e. input and output variables of large dimensionality), which
can be then treated as ”natural” restrictions for the correlations matrix structure.
Since however the data inside the samples can also be correlated, one has to re-
move in-the-sample correlations first and then find some signal (if any) outside the
samples.

2. Model description

The detailed description of the ideas, that drive our toy model can be found
in [4]. The authors suggested to compare the singular value spectrum of the
empirical rectangular M ×N correlation matrix with a benchmark obtained using
random matrix theory results (c.f. [5]), assuming there are no correlation between
the variables.

2.1 Notation and mathematical aspects

Consider N input factors Xa a = 1, . . . , N and M output factors Yα α =
1, . . . ,M with the total number of observations being T . All time series are stan-
dardized to have zero mean and unit variance. The data can be completely different
or be the same variables but observed at different times.

To remove the correlations inside each sample we form two correlation ma-
trices, which contain information about in-the-sample correlations

CX =
1
T

XT X, CY =
1
T

Y T Y. (1)

The matrices are then diagonalized and the empirical spectrum is compared to
the theoretical Marčenko-Pastur spectrum [6–8]. This allows to find and extract
statistically significant factors. The eigenvalues, which lie much below the lower
edge of the Marčenko-Pastur spectrum represent the redundant factors, rejected
by the system. They can be excluded from further analysis, which slightly reduces
the dimensionality of the problem (i.e. one gets rid of spurious correlations). How-
ever before doing that, one has to create a set of uncorrelated unit variance input
variables X̂ and output variables Ŷ :

X̂at =
1√
Tλa

V T Xt Ŷαt =
1√
Tλα

UT Yt, (2)

where V, U, λa, λα are the corresponding eigenvectors and eigenvalues of CX , CY

respectively.
Now we are ready to create the M ×N cross-correlation matrix G between

the Ŷ and X̂

G = Ŷ X̂T (3)
which includes only the correlations between input and output factors. The sin-
gular value decomposition (SVD) (c.f. [9]) is used to find the empirical spec-
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trum of eigenvalues. The singular value spectrum represent the strength of cross-
correlations between input and output factors.

2.2 Singular values and free random matrix theory

Theoretical predictions for eigenvalue density are obtained using the free
random matrix theory and assuming no correlations between the samples. The
final result for singular eigenvalue density, when there are no correlations between
input and output data is:

%(s) = max
(

1− N

T
, 1− M

T

)
δ(s)

+max
(

M + N − T

T
, 0

)
δ(s− 1) + Re

√
(s2 − γ−)(γ+ − s2)

πs(1− s2)
(4)

with s being singular eigenvalues and

γ± =
1

T 2

(
NT + MT − 2MN ± 2

√
MN(T −N)(T −M)

)

Empirical results are then compared with the above benchmark. Any exceptions
may suggest nontrivial correlations between the samples.

3. Applications

Two different sets of data were investigated: Polish macroeconomic data
and generated set of data, where temporal cross-correlations are introduced by
construction.

3.1 Polish macroeconomic data

The analysis began with checking the relevance of the above described model
[4] to investigation of the relation between inflation and other Polish macroeco-
nomic data found via Reuters 3000Xtra Service. We have used monthly M = 13
changes of different CPI indicators as our predicted variables (i.e. output sample
Y ) and N = 48 monthly changes of economic indicators (eg. sectoral employ-
ment, foreign exchange reserves, PPI’s) as explanatory variables (Fig. 1). The
investigated period was between 01.1999-08.2007 (i.e. T = 104).The data were
standardized, but the factors in input and output samples were not selected very
carefully, so the data could speak for themselves and system could be able to se-
lect the optimal combination of variables. The next step involved cleaning internal
correlations in each sample. To do it, we have used Eq. (1). The resulting matrices
were then diagonalized and two sets of internally uncorrelated data were prepared.
From the uncorrelated data we create the rectangular matrix G and diagonalize it
to calculate singular eigenvalues. Finally we have used the benchmark calculated
in Eq. (2) to compare the data with the predicted eigenvalue density. The results
show, that there exists some singular eigenvalues, which do not fit the benchmark.
Among them, the highest singular eigenvalue s1 = 2.5 and the corresponding sin-
gular eigenvector, represent standard correlation between expenses for electricity
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Fig. 1. Correlation matrices representing in-the-sample correlations i.e. 48 macroeco-

nomic indicators — input X (left side) and 13 CPI’s — output Y (right side).

Fig. 2. Out of the sample correlations G (left side). Singular eigenvalues od G (right

side).

and producers prices in the energy sector. There are however other non-trivial re-
lations between eg. CPI in telecommunication sector and foreign exchange reserves
(Fig. 2).

3.2. Artificially generated data - multivariate GARCH (1,1) process

We also wanted to check whether the above method was able to extract
temporal correlations for the data, that memorize its past realizations and, but
not necessary, its past variances. In order to proceed a sample of 100 paths of
GARCH(1,1) type and 1000 observations were generated. The steps presented in
the previous sekcja were repeated. The input data were 100 GARCH(1,1) paths
lagged by one observation, and the output data were represented by the original set
of variables. As a result we got one eigenvalue, which do not fit well the assumed
benchmark and is suspected to represent the memory of the data (Fig. 3). However
further test to confirm the idea are still necessary.
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Fig. 3. Singular eigenvalues from the GARCH process compared to the benchmark.

4. Conclusions and future work

Both examples show that there exists non-trivial correlation structure
between input and output variables.Though redundant factors add significant
amount of noise in the problem, the SVD decomposition allows to find only truly
informative factors. This might be helpful in analyzing the effect of so called
sunspot or spurious correlations and investigation of correlations between differ-
ent stock exchanges, and will be the part of our future work.
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