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We perform an analysis of fractal properties of the positive and the

negative changes of the German DAX30 index separately using multifractal

detrended fluctuation analysis. By calculating the singularity spectra f(α)

we show that returns of both signs reveal multiscaling. Curiously, these spec-

tra display a significant difference in the scaling properties of returns with

opposite sign. The negative price changes are ruled by stronger temporal

correlations than the positive ones, which is manifested by larger values of

the corresponding Hölder exponents. As regards the properties of dominant

trends, a bear market is more persistent than the bull market irrespective of

the sign of fluctuations.

PACS numbers: 89.20.–a, 89.65.Gh

1. Introduction

Typical signals generated by economic systems are non-trivial structures
which can be characterized in terms of the theory of multifractals. Interestingly,
these structures are to some degree universal in real world, since they come not
only from finance but also from diverse fields of science like physics [1–5], chemistry
or biology [6–9]. The concept of “fractal world” was proposed by Mandelbrot in
1980s and was based on scale-invariant statistics with power law correlations [10].
In subsequent years this new theory was developed and finally it brought a more
general concept of multiscaling. It allows one to study the global and local behavior
of a singular measure, or, in other words, the mono- and multifractal properties of a
system. In economy, multifractality is a one of the well known stylized facts which
characterize non-trivial properties of financial time series [11]. The stock price (or
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index) fluctuations can be described in terms of long-range temporal correlations
by a spectrum of the Hölder–Hurst exponents and a set of fractal dimensions. The
obtained results show that there exist n-point correlations in financial data, hardly
detectable with commonly used methods like power spectrum or autocorrelation
function. This discovery allows us to reject the efficient market hypothesis (EMH)
with its main assumption that returns are uncorrelated. Of course, this kind of
analysis is possible because appropriate methods were developed in last decade,
among which the most popular are wavelet transform modulus maxima (WTMM)
and multifractal detrended fluctuation analysis (MFDFA). As one of our recent
works proved [12], the latter method is more reliable when the fractal properties
of the analyzed signals are not known a priori and this is why we prefer to use this
method here.

In a standard approach, one assumes that both the positive and the negative
fluctuations have the same fractal or scaling properties; however, this may not
apply to some particular cases [13]. For example, studying deeper characteristics
of the financial signals we can infer that the nature of fluctuations can depend
on their direction [14]. Therefore, in order to apprehend the studied processes
completely we have to take into consideration also their sign. This is a reason
why we decided to generalize MFDFA, to be able to analyze the positive and the
negative changes separately.

This paper is organized as follows. In Sect. 2, we describe the data and
explain the method in detail. Section 3 presents the results and discussion and,
finally, Sect. 4 concludes.

2. Data and methodology

All the calculations were performed for high-frequency data from the German
stock market index DAX, comprising the two following periods: Period 1 from
Nov 28, 1997 to Dec 30, 1999 and Period 2 from May 1, 2002 to May 1 2004.
The time interval between consecutive records was ∆t = 1 min. In each case
the logarithmic returns were calculated: g(i) = ln(p(ti + ∆t)) − ln(p(ti)), where
p(ti) denotes an index value in a moment ti. In addition, we removed all the
overnight returns, because they cover a much longer time interval than 1 min
and are also contaminated by some spurious artificial effects [15]. The length of
the time series was approximately 268,000 points and it was enough to obtain
statistically significant results. Moreover, we also analyzed two shorter time series
(from Nov 28, 1997 to July 15, 1998 and from July 16 to Oct 15, 1998) which
represent the periods of a bull and a bear market, respectively.

In order to investigate the fractal properties of the positive and the nega-
tive index fluctuations separately, we modified the algorithm of MFDFA [16] such
that the natural scale of signal and the length of possible temporal correlations
is preserved. The main steps of this procedure can be briefly sketched as follows.
At first one divides a given time series g(i) into Ms disjoint segments of length
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s starting from the beginning of the g(i). To avoid neglecting the data which do
not fall into any segment (it refers to the data at the end of g(i)) the procedure
is repeated starting this time from the end of the time series. Finally, one has
2Ms segments total. For each segment ν, two signal profiles have to be calculated,
separately for the positive (p) and the negative (n) fluctuations

Y ν
p (i, s) =

i∑

k=1

g(Qν(k)), i = 1, . . . , Nν
p , (1)

Y ν
n (j, s) =

j∑

l=1

g(Rν(l)), j = 1, . . . , Nν
n , (2)

where Qν(k) and Rν(l) denote the sets of (Nν
p(n)) positions of the positive and the

negative returns, respectively, within a segment ν. In the next step we evaluate
the variance for each segment

F 2
p (ν, s) =


1

s

Nν
p∑

k=1

[
Y ν

p (k, s)− P l
ν(k)

]

 (3)

and

F 2
n(ν, s) =


1

s

Nν
n∑

l=1

[
Y ν

n (l, s)− P l
ν(l)

]

 , (4)

where P l
ν() is a local trend in a segment ν; it can be approximated by fitting an

l-th order polynomial P l
ν . This trend has to be subtracted from the data. In this

paper we use l = 2 so we can eliminate l order possible trend in the profile and
l− 1 in the original time series. By averaging F 2

p (ν, s) and F 2
n(ν, s) over all ν’s we

obtain the q-th-order fluctuation functions

F q
p (s) =

{
1

2Ms

2Ms∑
ν−1

[
F 2

p (ν, s)
]q/2

}1/q

, (5)

F q
n(s) =

{
1

2Ms

2Ms∑
ν−1

[F 2
n(ν, s)]q/2

}1/q

, (6)

where q ∈ < (in this paper, to make the results more readable, we use −10 <

q < 10 [17]). Of course, this procedure has to be repeated for different segment
lengths s. For a signal with fractal properties the fluctuation functions reveal
power-law scaling

F q
p(n)(s) ∼ shp(n)(q) (7)

for large s. Family of the generalized Hurst exponents h(q) characterizes com-
plexity of an analyzed fractal. For a monofractal signal h(q) = const, while for
multifractal signals h(q) is a decreasing function of q. By knowing the spectrum
of the generalized Hurst exponents for fluctuations with different signs we are able
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to calculate the singularity spectrum fp(n)(α) according to the following relations:

τ(q) = qh(q)− 1, (8)

α = τ ′(q) and f(α) = qα− τ(q), (9)
where α is called the singularity exponent and f(α) is a fractal dimension of the
set of all points x0 such that α(x0) = α.

3. Results

Figure 1 presents the fp(α) and fn(α) spectra for DAX in Period 1. It is
easily visible that these spectra are different. For the negative fluctuations fn(α)
is rather wide (∆α ≈ 0.3) with its maximum placed at αmax

n ≈ 0.85. fp(α) is
much narrower (∆α ≈ 0.15) than in the former case; its maximum corresponds to
αmax

p ≈ 0.73. In both cases, the positions of the maxima indicate a persistent
character of the related index fluctuations. Naturally, if one looks at the scaling
properties of volatility, one can expect such behavior, but the shift between fp(α)
and fn(α) as well as the difference in the spectra widths is a completely new obser-
vation. The fn(α) is wider than its counterpart for the positive returns, suggesting
that a richer multifractal (or more complex dynamics) is seen for the negative fluc-
tuations. For the shuffled signals, properties of the singularity spectrum do not
depend on a direction of index changes. A lack of temporal correlations is mani-
fested by a position of the spectrum at αmax

p,n ≈ 0.5. The difference between fp(α)
and fn(α) in this case is rather meaningless and is a consequence of a finite sample
size. We can see similar results in Fig. 2 (Period 2). Again, the fn(α) is shifted
to the right (maximum at αmax

n ≈ 0.7) relative to the spectrum for the positive
returns (αmax

p ≈ 0.65); however, the difference is rather small in this case. More-
over, the multifractal spectrum for the negative index changes is substantially
wider (∆α ≈ 0.45) than for fp(α) (∆α ≈ 0.25) and this indicates a more complex

Fig. 1. Singularity spectra for negative (squares) and positive (circles) DAX returns

from Period 1 (Dec 1997–Dec 1999). Closed symbols refer to original and open to

shuffled times series.
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Fig. 2. Singularity spectra for negative (squares) and positive (circles) DAX returns in

Period 2 (May 2004–May 2006). Filled symbols refer to original and open to shuffled

times series.

dynamics governing behavior of the negative returns. For the mixed-up data the
spectra look almost identically with their maximum at αmax

n,p ≈ 0.5.
The multifractal characteristics of data can depend on a considered time-

-frame [18]. In particular, the multifractal spectrum can evolve in time to reflect
the changing scaling properties of the data under study. In order to investigate
how different market phases, associated with different behavior of investors, can
manifest themselves in the singularity spectra of the index returns, we applied our
method to the bull and the bear phases, separately. Figure 3 shows the intervals of

Fig. 3. DAX daily closings in Period 1 (a) and the zoomed subperiods of index rise (b)

and index decline (c).
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Fig. 4. Comparison of f(α) spectra for phase of growth (circles) and phase of decrease

(squares). Open symbols refer to negative and filled to positive DAX fluctuations. Inset

refers to shuffled time series.

persistent growth and sudden decrease in the DAX index during Period 1. Results
of our fractal analysis for these two intervals are presented in Fig. 4. There is
a clear difference between spectra for the growth and the decrease phase. For
the period of slump the singularity spectra are shifted to the right, which means
stronger correlations (both for the negative and the positive changes) than in
case of boom. The position of maximum for the negative fluctuations is localized
approximately at αmax

n ≈ 0.87 for the bear phase, whereas for the bull phase the
maximum is placed at αmax

p ≈ 0.82; this gives the discrepancy ∆α ≈ 0.2. For the
positive fluctuations the difference is even more apparent and it totals ∆α ≈ 0.25.
By analyzing these relations between the spectra for the returns of different sign
we can formulate a conclusion that the negative fluctuations are more persistent
(or stronger correlated) than series of the opposite sign. This phenomenon is
reflected in positions of the maxima of f(α) (higher αmax

n ). The width of the
singularity spectra for the bear phase is ∆α ≈ 0.35 irrespective of a sign. For the
bull phase, on the other hand, the f(α) spectrum is wider for the positive changes
(∆α ≈ 0.45) than for the negative ones ∆α ≈ 0.35; it shows richer multifractality
in the former case. For the shuffled series the spectra have approximately the
same width ∆α ≈ 0.2 and are localized in a close vicinity of α ≈ 0.5. This
demonstrates that the temporal correlations present in time series are responsible
for the discrepancy in fractal properties between the bull and bear phases.

4. Conclusions

We applied the MFDFA technique to show a difference in the fractal proper-
ties of the negative and the positive DAX index fluctuations. Our results suggest
that a more persistent behavior and often richer multifractality is associated with
the negative price changes. This asymmetry disappears for the shuffled signals
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which implies that the temporal correlations are solely responsible for this effect.
Moreover, our study of the index trends indicates a significant discrepancy between
the bear and the bull market. Declining market is much more correlated than the
rising one and can be described in terms of the Hölder exponent by α close to 1.
We believe that the asymmetric fractal properties can give us an opportunity to
better understand the mechanism that governs the stock market dynamics. From a
practical point of view this fact can have applications in modeling and forecasting
the stock market data and may be an important factor in risk evaluation.

References

[1] C. Monthus, T. Garel, Phys. Rev. E 75, 051122 (2007).
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