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In this paper the bivariate stochastic volatility models (with stochastic

volatility and stochastic interest rate) and the univariate fat-tailed and cor-

related stochastic volatility model (with stochastic volatility and constant

interest rate) are used in the Bayesian forecasting of the payoff of European

call options. The basic instrument is the WIG20 index. The predictive dis-

tribution of the discounted payoff is induced by the predictive distribution of

the growth rate of the WIG20 index and the WIBOR1m interest rate. The

Bayesian inference about the volatilities and the predictive distribution of

the discounted payoff function is based on the joint posterior distribution of

the latent variables, the parameters, and the predictive distribution of future

observations, which we simulate via Markov chain Monte Carlo methods (the

Metropolis–Hastings algorithm is used within the Gibbs sampler). The re-

sults show that allowing interest rate to be stochastic does not significantly

improve forecasting performance of the discounted payoff. The predictive

distributions of the discounted payoff are characterised by huge dispersion

and thick tails, thus uncertainty about the future value of the payoff was

ex-ante very big.

PACS numbers: 89.65.Gh, 05.10.Gg

1. Introduction

The pricing of option with stochastic volatility (SV) and stochastic interest
rate is a difficult task. The classical Black–Scholes model assumes that asset
returns follow continuous diffusion process with constant conditional volatility and
constant interest rate. Thus, numerous studies on option pricing have modified
the Black–Scholes model to allow for stochastic volatility for the underlying assets
processes or stochastic interest rates.
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The option pricing model incorporating both stochastic interest rates and
stochastic volatility is not often considered in literature. Hull and White [1] assume
constant interest rate and stochastic volatility. The Hull and White formula is used
by Mahieu and Schotman [2] in a discrete time univariate stochastic volatility
model. Merton [3], Turnbull and Milne [4] consider the cases with constant asset
return volatility but stochastic interest rates. Heston [5] presents a close-form
solution for options on assets with stochastic volatility, constant interest rate, and
when the spot asset is correlated with volatility. Kim [6] compares the pricing
performance of stock option pricing models under several stochastic interest rate
processes but under constant volatility. Fouque et al. [7] present derivative pricing
for a class of stochastic volatility models with constant interest rate. In [8] it is
built the option pricing model which simultaneously incorporates both a stochastic
interest rate and a stochastic volatility process for stock returns. Their results
are used by Jiang and Sluis [9] in context of a discrete-time bivariate stochastic
volatility model.

The aim of the paper is to check whether allowing interest rates to be stochas-
tic improves forecasting performance of the discounted payoff. We compare the
option pricing model under stochastic interest rate (allowing the interest rate to
follow an SV process) with constant interest rate model (univariate SV model for
the underlying asset).

The structure of the article is as follows: Sect. 2 consists of a short presen-
tation of the Bayesian univariate SV model with fat-tails and correlated errors,
Sect. 3 includes a brief presentation of the Bayesian bivariate SV model, Sect. 4
focuses on the Bayesian forecasting of the discounted payoff of an European call
option, Sect. 5 presents the posterior results connected with the option pricing on
the WIG20 index, and finally, Sect. 6 incorporates the conclusions.

2. Bayesian univariate AR(1)-FCSV model

Let xt denote the price of the underlying asset at time t. The growth rate
yt is defined as yt = 100 ln (xt/xt−1), t = 1, 2, . . . , T + s and is modelled using
the discrete-time SV model with fat-tails and correlated errors (FCSV) considered
in [10]. Here T is the number of the observations used in estimation, s is the
predictive horizon. The FCSV model specifies a log-normal autoregressive process
for the conditional variance with correlated innovations in the conditional mean
and conditional variance equations. The univariate AR(1)-FCSV model is defined
as follows ‡:

yt − δ1 = %1(yt−1 − δ1) + εt, (1)

εt = ut

√
ht/ωt, ln ht = γ + φ ln ht−1 + σhηt,

{ωt} ∼ iiχ2(ν)/ν, ωt ⊥ (ut, ηl), t, l ∈ {1, 2, . . . , T + s},
‡Because a positive autocorrelation of order one is quite usual for a stock market

index (see [11]), we use the autoregressive structure.
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{(ut, ηt)′} ∼ iiN

([
0
0

]
,

[
1 %

% 1

])
,

where iiN denotes identically and independently normally distributed; ⊥ denotes
independence; %1, %, φ ∈ (−1, 1), ν, σh ∈ (0,∞), δ1, γ ∈ <. Let us note that the
random variable ut/

√
ωt has a Student-t distribution with ν degrees of freedom.

One interpretation for the latent variable ht is that it represents the random, un-
even and autocorrelated flow of new information into financial markets (see [12]).
Here φ is connected with the volatility persistence, σ2

h is the volatility of the log-
-volatility. The above model can pick up the kind of asymmetric behaviour often
observed in stock price movements, which is known as the leverage effect when the
correlation is negative (% < 0)§. In this paper we use the following prior structure:

p(δ1, %1, γ, φ, σ2
h, ν, %) = p(δ1)p(%1)p(γ)p(φ)p(σ2

h, ν)p(%),

where we use proper prior densities of the following distributions: p(δ1) ∼
N(0, 1), %1 ∼ U(−1, 1), γ ∼ N(0, 100), φ ∼ N(0, 100)I(−1,1)(φ), τ ∼
IG(1, 0.005), ψ|τ ∼ N(0, τ/2), ν ∼ exp(0.1), ψ = σh%, τ = σ2

h(1 − %2) (see
[10]). The prior distribution for δ1 is standardized normal, U(−1, 1) denotes the
uniform distribution over (–1,1). The prior distribution for φ is normal, truncated
by the restriction that the absolute value of φ is less than one (I(−1,1)(.) denotes
the indicator function of the interval (−1, 1), which is the region of stationarity of
ln ht). The symbol IG(v0, s0) denotes the inverse Gamma distribution with mean
s0/(v0−1) and variance s2

0/[(v0−1)2(v0−2)](thus, when % = 0, the prior mean for
σ2

h does not exist, but σ−2
h has a Gamma prior with mean 200 and standard de-

viation 200). The symbol exp(λ) denotes the exponential distribution with mean
1/λ (thus the prior mean for ν is 10 with the standard deviation 10). The initial
condition h0 is equal to y2

0 . These assumptions reflect rather weak prior knowledge
about the parameters.

3. Bayesian bivariate VAR(1)-t-TSV model

Let xj,t denote the price of asset j at time t for j = 1, 2 and t = 1, 2, . . . , T +s

(in this paper x1,t and x2,t are respectively the interest rate and index level at
time t). The vector of growth rates yt = (y1,t, y2,t)′, each defined by the formula
yj,t = 100 ln (xj,t/xj,t−1), is modelled using the VAR(1) framework

yt − δ = R(yt−1 − δ) + ξt, t = 1, 2, . . . , T + s. (2)
In (2) δ is a 2-dimensional vector, R is a 2 × 2 matrix of parameters, and ξt is a
bivariate SV process. More specifically[

y1,t

y2,t

]
−

[
δ1

δ2

]
=

[
r11 r12

r21 r22

]([
y1,t−1

y2,t−1

]
−

[
δ1

δ2

])
+

[
ξ1,t

ξ2,t

]
.

§If % is negative, then a negative innovation ut is associated with higher contem-
poraneous and subsequent volatilities. On the other hand, a positive innovation ut is
associated with a decrease in volatility.
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We assume that, conditionally on the latent variable vector Ωt and ωt, ξt follows
a bivariate Gaussian distribution with mean vector 0[2×1] and covariance matrix
(1/ωt)Σt, i.e.

ξt|Ωt, ωt ∼ N(0[2×1], (1/ωt)Σt), t = 1, 2, . . . , T + s.

The random variable ωt, t = 1, ..., T + s are assumed to be {ωt} ∼ iiχ2(ν)/ν,

ωt ⊥ Ωl, for t, l ∈ {1, 2, . . . , T + s}. For the matrix Σt the Cholesky decomposition
is used (see [13]):

Σt = LtGtL
′
t, (3)

where Lt is a lower triangular matrix with unitary diagonal elements, Gt is a di-
agonal matrix with positive diagonal elements

Lt =
[

1 0
q21,t 1

]
, Gt =

[
q11,t 0

0 q22,t

]
,

{q21,t} and {ln qjj,t} (j = 1, 2), as in the univariate SV specification, are standard
univariate autoregressive processes of order one, namely

ln qjj,t − γjj = φjj(ln qjj,t−1 − γjj) + σjjηjj,t, j = 1, 2,

q21,t − γ21 = φ21(q21,t−1 − γ21) + σ21η21,t,

where ηt = (η11,t, η22,t, η21,t)′ and {ηt} ∼ iiN(0[3×1], I3), Ωt = (q11,t, q22,t, q21,t)′,
γij ∈ <, φij ∈ (−1, 1), σij ∈ (0,∞), i, j = 1, 2, i ≥ j. From the decomposition in
(3), we have

Σt =

[
q11,t q11,t q21,t

q21,t q11,t q11,t q2
21,t + q22,t

]
.

The Cholesky decomposition of Σt requires no parameter constraints for the pos-
itive definiteness of Σt. The matrix Σt is positive definite if qjj,t > 0 for j = 1, 2,
which is achieved by modelling ln qjj,t instead of qjj,t. If ν > 2 and |φij | < 1
(i, j = 1, 2, i ≥ j), then ln q11,t, ln q22,t, q21,t are stationary and the SV pro-
cess is a white noise (see [14]). The conditional distribution of yt (given the
past of the process, ψt−1, and the latent variable vector Ωt) is bivariate Stu-
dent t with ν degrees of freedom, and the precision matrix Σ−1

t . We make
similar assumptions about the prior distributions as previously. In particular:
(γij , φij)′ ∼ N(0, 100I)I(−1,1)(φij), σ2

ij ∼ IG(1, 0.005), ln qii,0 ∼ N(0, 100) for
i, j ∈ {1, 2} and i ≥ j; q21,0 ∼ N(0, 100), ν ∼ exp(0.1). For all elements of δ and R

we assume the multivariate standardized normal prior N(0, I6), truncated by the
restriction that all eigenvalues of R lie inside the unit circle (similar to [15]).

4. Application to Bayesian forecasting of the discounted payoff

An important application of the stochastic volatility models is the option
pricing. The payoff at time T + s of an European call option is given by
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VT+s = max(xT+s −K, 0), (4)
where K is the exercise price (strike price), xT+s is the price of the underlying
asset at time T + s (no dividend being paid), s is units time before maturity. The
present value of payoff considered at time T under stochastic interest rate is

WT |T+s = exp

(
−

∫ T+s

T

rtdt

)
max(xT+s −K, 0), (5)

where rt is the interest rate at time t. This discounted payoff is a random vari-
able as a measurable function of xT+s and rt, t ∈ [T, T + s], which are random.
The distribution of WT |T+s is induced by the predictive distributions of xT+s and
rt, t ∈ [T, T + s]. The Bayesian approach naturally provides a tool to compute
the predictive distribution of the discounted payoff, WT |T+s, without finding an
equivalent martingale (see [16, 17]). Thus, the predictive density of the payoff is
defined by

p(WT |T+s|y) =
∫

p(WT |T+s|θ, y)p(θ|y)dθ,

where y is the sample of returns used for estimation, p(θ|y) is the posterior den-
sity of the parameters and latent variables of the Bayesian econometric model. In
discrete time model the integral in Eq. (5) is replaced by the summation

WT |T+s = exp

(
−

T+s∑

t=T+1

rt−1

)
max(xT+s −K, 0). (6)

It is important to stress that the specification (1) relaxes Black and Scholes con-
stant volatility assumption. The volatility follows a separate process. The spec-
ification (2) relaxes Black and Scholes constant volatility and constant interest
rate assumptions, furthermore allows the interest rate to follow an SV process.
In deterministic volatility models with constant interest rate, an investor incurs
only the risk from a randomly evolving asset price. Subject to certain modelling
assumptions (see [18]) it is possible to perfectly replicate the payoff of the option
through dynamic trading. Thus, there is unique preference independent price for
the option. This price can be calculated as the discounted expected value under
the equivalent martingale measure. In the univariate AR(1)-FCSV model with
constant interest rate, asset return volatility is driven by a random source that
is different from the random source driving the asset returns process. Thus, the
investor incurs the risk from a randomly evolving asset price and the risk of a ran-
domly evolving volatility. In a discrete-time model with stochastic volatility, the
market is incomplete and thus the equivalent martingale measure is not unique.
However, in some cases (e.g. if the random source driving the asset returns pro-
cess and the random source driving the asset return volatility are independent) a
close-form expression for the option’s price is available (see [1]). Let us note that
in the bivariate VAR(1)-t-TSV model (presented above) there are four sources of
risk: the risk from the asset price, the volatility of the underlying asset, the inter-
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est rate, and from the volatility of the interest rate. It is clear that this model is
incomplete. As note [19], a frictionless diffusion model is incomplete if the number
of sources of randomness is greater than the number of traded assets. It is well
known that in an incomplete market there is no unique fair price and no universal
pricing algorithm. There are several alternative methodologies which have been
proposed as pricing mechanisms: writing down the dynamics of assets under a
pricing measure, choosing (arbitrarily) a market price of risk for the non-traded
assets, assuming that there is a call option which is liquidly traded (this approach
does not explain the price of the original traded call), pricing via a hedging criteria
(minimising some functional of the hedging error), minimal distance martingale
measures, convex risk measures, super-replication pricing, and utility indifference
pricing (see [19] for a review of the methods). In this paper we consider the origi-
nal probability measure (the physical measure). This means that we assume that
both the stochastic interest rate volatility and stochastic interest rate, as well as
stochastic asset return volatility have zero risk premium. The Bayesian approach
takes completely into account the uncertainty, which come from prediction and
from the parameters, by construction of the predictive distribution of the dis-
counted payoff. A measure of uncertainty can be attached to the option price by
computing quantiles and the predictive option price may be defined as the median
of WT |T+s (see [17]).

5. Empirical results

We use daily observations (closing quotes) of the WIG20 index and WI-
BOR1m (the 1-month Warsaw Interbank Offered Rate)¶ over the period from
January 2, 2001 to December 31, 2004. The dataset of the daily logarithmic
growth rates consists of 1005 observations (for each series). The first observation
is used to construct initial conditions, thus T = 1004. We consider all European
call options on the WIG20 index, which were quoted on Warsaw Stock Exchange
(WSE) on December 31, 2004 (at the end of observed sample). The exercise dates
are March 18, 2005 (i.e. s = 55 trading days) or June 17, 2005 (i.e. s = 115
trading days). As the proxy for the unobservable short rate, the 1-month WIBOR
rate is used. As justified [20] and [9] the use of the 1-month WIBOR rate is a
compromise between an instantaneous rate (overnight rates) and avoiding some of
the associated spurious microstructure effects. In VAR(1)-t-TSV model the first
component of the vector yt is the growth rate of WIBOR1m, the second one is the
growth rate of the WIG20 index.

In Tables I and II we report the main characteristics of the predictive distri-
butions of the discounted payoff for the European call option on WIG20 index‖.
In the univariate AR(1)-FCSV model with constant interest rate, according to the

¶The data was downloaded from www.money.pl.
‖Our posterior results are obtained using MCMC methods: Metropolis–Hastings

within the Gibbs sampler.
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TABLE I

The predictive characteristics of the discounted payoff with s = 55.

Model Quantil of order K = 1700 K = 1800 K = 1900 K = 2000 K = 2100

0.05 8.68 0 0 0 0

0.25 172.05 73.47 0 0 0

FCSV 0.50 284.27 185.69 87.11 0 0

0.75 401.76 303.18 204.60 106.02 7.44

0.95 595.20 496.62 398.04 299.46 200.88

IQR 229.71 229.71 204.08 106.02 7.44

P (WT |T+s = 0|y) 0.045 0.132 0.302 0.527 0.737

0.05 29.45 0 0 0 0

0.25 180.73 82.15 0 0 0

t-TSV 0.50 286.44 187.86 89.28 0 0

0.75 397.73 299.15 200.57 101.99 3.41

0.95 580.63 482.05 383.47 284.89 186.31

IQR 217.00 217.00 200.57 101.99 3.41

P (WT |T+s = 0|y) 0.034 0.114 0.284 0.523 0.744

true value of discounted

payoff

271.11 172.53 73.94 0 0

quotations on

December 31, 2004/

January 3, 2005

285/265 200/190 105/94 50/44 15/13.5

recommendation of Warsaw Stock Exchange and Polish National Depository for
Securities it was assumed that the risk-free interest rate is 6.5 percent per annum
(i.e. r = 6.5 percent on annual base, see [21]). The predictive distributions of
the discounted payoff have such huge dispersions that in practice the differences
are negligible. The observed market prices of the options are located between the
medians and the quantiles of order 0.75 or between the quantiles of order 0.25 and
the medians, but in the close neighbourhood of medians. Also, the true values of
the discounted payoffs were close to the medians. It is worth to stress that the
inter-quartile range (IQR) indicates huge uncertainty of the future payoff. When
we use the median of the predictive distribution of the discounted payoff as the
objective option price, we see that all models overprice the option. The overpricing
may be due to our assumption that the risk premiums in both interest rate and
asset return processes as well as the conditional volatility processes are zero.

In Fig. 1 we present histograms of the predictive distributions of the dis-
counted payoff of the European call options with the exercise price K equal to 1800
index’s points. The first bars of graphs denote probabilities of non-exercise of the
options. The little grey points represent the true values of the discounted payoff.
They are located between the first quartiles and the medians of the predictive dis-
tributions of the discounted payoff. The predictive histograms are characterised by
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TABLE II

The predictive characteristics of the discounted payoff with s = 115

Model Quantil of order K = 1800 K = 1900 K = 2000 K = 2100

0.05 0 0 0 0

0.25 36.58 0 0 0

FCSV 0.50 211.11 114.08 17.05 0

0.75 401.14 304.11 207.08 110.05

0.95 728.50 631.47 534.44 437.10

IQR 364.56 304.11 207.08 110.05

P (WT |T+s = 0|y) 0.207 0.331 0.474 0.616

0.05 0 0 0 0

0.25 54.56 0 0 0

t-TSV 0.50 216.69 119.35 22.32 0

0.75 393.70 296.67 199.33 102.30

0.95 698.12 601.09 503.75 406.72

IQR 339.14 296.67 199.33 102.30

P (WT |T+s = 0|y) 0.182 0.311 0.464 0.616

true value of discounted

payoff

217.43 120.36 23.30 0

quotations on

December 31, 2004/

January 3, 2005

189/228 119/119 78/78 45/31

Fig. 1. Histograms of the predictive distributions of the discounted payoff (K = 1800).

huge dispersion and thick tails, thus uncertainty about the future value of payoff
was ex-ante very big. We see that the right tails grow with forecast horizon.
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TABLE III

The predictive median of WT |T+s minus the true value of the discounted

payoff.

s = 55 s = 55 s = 55 s = 55 s = 55 MFE

Model K = 1700 K = 1800 K = 1900 K = 2000 K = 2100

FCSV 13.16 13.16 13.17 0.00 0.00 –

t-TSV 15.37 15.36 15.35 0.00 0.00 –

s = 115 s = 115 s = 115 s = 115 s = 115 –

Model K = 1700 K = 1800 K = 1900 K = 2000 K = 2100

FCSV – –6.32 –6.28 –6.25 0.00 2.29

t-TSV – –1.10 –1.21 –1.01 0.00 4.75

The options, for which the probability of non-execution is above 0.5, were not
exercised. The settlement prices for derivative securities were equal to 1975 (for
s = 55) and 2024 (for s = 115)∗∗. The options with the strike price 2100 index’s
points (in the case of OW20C5210 and OW20F5210) were not executed. Also the
call option with exercise price K = 2000 and s = 55 (i.e. OW20C200) was not
exercised. In the last column in Table III we have the average (mean) forecasting
errors (MFE)††. The level of MFE in the bivariate VAR(1)-t-TSV model (with
stochastic interest rate) is a bit higher than in univariate AR(1)-FCSV model
(with constant interest rate). The empirical results allow us to infer that stochastic
interest rates are not important for the forecasting of the discounted payoff. Let us
note that in the case of s = 115 the VAR-t-TSV model turns out better (in term
of MFE) than the AR(1)-FCSV model. But, it seems that stochastic interest rate
has minimal impact on option prices. Surprisingly, in the univariate AR(1)-FCSV
model the uncertainty of the future value of payoff (measured by IQR) is bigger.

6. Conclusions

In this paper the bivariate stochastic volatility models (with stochastic
volatility and stochastic interest rate) and the univariate fat-tailed and corre-
lated stochastic volatility model (with stochastic volatility and constant interest
rate) are used in Bayesian forecasting of the payoff of the European call options.
The basic instrument is the WIG20 index. The empirical results indicate that
allowing interest rates to be stochastic does not significantly improve forecasting
performance of the discounted payoff. The VAR(1)-t-TSV model (with stochas-
tic interest rate) does not dominantly outperform the AR(1)-FCSV model (with
constant interest rate). The predictive distributions of the discounted payoff are
∗∗The last value of the WIG20 index was equal to 1960.57.
††The average pricing error is defined as: MFE = (1/n)

∑n
i=1 Ĉi − Ci, where n is

the number of options used in the comparison, Ci and Ĉi represent respectively the true
value of discounted payoff and the predictive median of the discounted payoff.
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characterised by huge dispersion and thick tails, thus uncertainty about the future
value of the payoff was ex-ante very big. The true values of the discounted payoff
(observed ex-post) are located between the first quartile and the median of the
predictive distribution of the discounted payoff, but the predictive distributions
of the discounted payoff have such huge dispersion that they are hardly informa-
tive for the purpose of option pricing. On the other hand, the financial markets
are characterised by a very high risk and uncertainty thus the huge dispersion
and heavy tails of the predictive distributions of the discounted payoff are quite
understandable.
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