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We study the antiferromagnetic phase of three-dimensional Hubbard

model with nearest neighbors hopping on a bipartite cubic lattice. We use

the quantum SU(2)×U(1) rotor approach that yields a fully self-consistent

treatment of the antiferromagnetic state that respects the symmetry proper-

ties of the model and satisfies the Mermin–Wagner theorem. As our theory

describes the evolution from a Slater (U ¿ t) to a Mott–Heisenberg (U À t)

antiferromagnet, we present the phase diagram of the antiferromagnetic Hub-

bard model as a function of the crossover parameter U/t.

PACS numbers: 71.10.Fd, 75.10.Jm

1. Introduction

In the realm of strongly correlated electrons, a key question concerns the
emergence of low energy scales, much smaller than the bare Coulomb interac-
tions between the electrons, which govern the existence and the competition of
different phases. Furthermore, the issue of magnetic ordering in those systems is
profoundly complex due to the requirement of self-consistency by incorporating
spin and charge fluctuations, while maintaining the essential spin-rotation sym-
metry. In the present paper, we propose a theoretical approach, which provides a
unified view of three-dimensional (3D), half-filled Hubbard model for any value of
the Coulomb repulsion U , which is able to handle the evolution from the Slater to
the Mott–Heisenberg antiferromagnet that captures correctly both the spin and
charge degrees of freedom. It is achieved by implementing the charge-U(1) and
spin-SU(2) rotationally invariant handling of the Hubbard model. In this scheme
the charge and spin excitations emerge in terms of a U(1) phase and variable spin
quantization axis: the effective field theory for the strongly correlated problem is
thus characterized by the U(2)=U(1)×SU(2) group, where the gauge potential in
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U(1) describes the evolution of a particle scalar characteristic, which is naturally
associated with an electric charge, while the gauge potential in SU(2) describes
the nontrivial dynamics associated with the evolution of the vector internal char-
acteristic of a particle such as spin.

2. The model

We start with the purely fermionic Hubbard Hamiltonian H ≡ Ht +HU :

H = −t
∑

〈rr′〉,α
[c†α(r)cα(r′) + h.c.] + U

∑
r

n↑(r)n↓(r), (1)

where 〈r, r′〉 run over the nearest-neighbor (n.n.) sites, U stands for the Coulomb
repulsion, t is the hopping amplitude, and c†α(r) is the electron creation operator
with spin α =↑, ↓. The average number of electrons is controlled via an additional
term in Eq. (1), H → H − µ

∑
r n(r) with µ being the chemical potential and

n(r) = n↑(r) + n↓(r) the fermionic number operator. Introducing the Grassmann
fields, cα(rτ) depending on the “imaginary time” 0 ≤ τ ≤ β ≡ 1/kBT (with T be-
ing the temperature) that satisfy the anti-periodic condition cα(rτ) = −cα(rτ+β),
we are able to write the path integral for the statistical sum Z =

∫
[Dc̄Dc] e−S[c̄,c]

with the fermionic action

S[c̄, c] = SB[c̄, c] +
∫ β

0

dτH[c̄, c] (2)

that contains the fermionic Berry term [1]:

SB[c̄, c] =
∑
rα

∫ β

0

dτ c̄α(rτ)∂τ cα(rτ). (3)

3. SU(2)×U(1) action

The interaction term in the Hubbard Hamiltonian can be decoupled via a
Hubbard–Stratonovitch (HS) transformation by introducing auxiliary fields for
the spin and charge fluctuations. Since such a procedure usually leads to a loss
of the spin rotational invariance, it is crucial to construct a formulation of the
theory which naturally preserves the existing symmetry present in the Hubbard
Hamiltonian. To this end, the density–density product in Eq. (1) is written,
following Ref. [2], in a spin-rotational invariant way

HU = U
∑

r

{
1
4
n2(rτ)− [Ω(rτ) · S(rτ)]2

}
, (4)

where Sa(rτ) = 1
2

∑
αα′ c

†
α(rτ)σ̂a

αα′cα′(rτ) denotes the vector spin operator (a =
x, y, z) and σ̂a are the Pauli matrices. The unit vector

Ω(rτ) = [sinϑ(rτ) cos ϕ(rτ), sinϑ(rτ) sin ϕ(rτ), cosϑ(rτ)] (5)
written in terms of polar angles labels varying in space-time spin quantization axis,
which, in order to maintain spin rotational invariance, should be considered to be
a priori arbitrary. Furthermore, the integration in the partition function should
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run over all possible directions of Ω(rτ). By decoupling spin and charge density
terms in Eq. (4) using auxiliary fields %(rτ) and iV (rτ), respectively, we write
down the partition function in the form

Z =
∫

[DΩ ]
∫

[DVD%]
∫

[Dc̄Dc] e−S[Ω ,V,%,c̄,c], (6)

where [DΩ ] ≡ ∏
rτk

sin ϑ(rτk)dϑ(rτk)dϕ(rτk)
4π is the spin-angular integration measure.

This leads us to the effective action

S [Ω , V, %, c̄, c] =
∑

r

∫ β

0

dτ

[
%2(rτ)

U
+

V 2(rτ)
U

+ iV (rτ)n(rτ)

+ 2%(rτ)Ω(rτ) · S(rτ)] + SB[c̄, c] +
∫ β

0

dτHt[c̄, c]. (7)

A systematic way of decomposing the fluctuating fields contained in the action in
Eq. (7) enables us to obtain a low energy effective theory.

4. AF long-range order parameter

A characteristic property of strongly correlated systems is the existence of
local moments, which are usually incorrectly described by weak-coupling theories.
With electron correlation effects becoming stronger, spin fluctuations have to be
considered carefully. The Hartree–Fock transition temperature has a meaning of
a temperature below which the amplitude ∆c of the antiferromagnetic (AF) order
parameter takes a well-defined value (∆c = U〈Sz(rτ)〉 sets the magnitude for the
Mott-charge gap). This is also interpreted as the appearance of local moments.
However, the existence of AF long-range order requires not only a nonzero value
of ∆c, but also ordered angular degrees of freedom Ω(rτ), whose low-lying exci-
tations are in the form of spin waves. In the CP1 representation (where the Néel
field is represented by two Schwinger bosons) the appearance of AF long-range
order is signaled by the Bose–Einstein condensation of the Schwinger bosons at
zero temperature. In a three-dimensional system with an ordered ground state,
thermally excited states reduce the spin correlations at finite temperatures. How-
ever, when the temperature is much higher than the typical coupling energy scale
J = 4t2/U , the spins are expected to be uncorrelated at large distances and the
magnetization mAF to vanish in the absence of an ordering field. This implies
the existence of a phase transition at some temperature Tc between the ordered
and disordered phases. According to our calculations, in the U → ∞ localized
limit mAF ≈ 0.422, i.e. less than the mean field value ∆c/U = 1/2. Figure 1
shows the calculated antiferromagnetic phase diagram as a function of tempera-
ture and interaction strength. At strong coupling our theory clearly describes a
Mott–Heisenberg antiferromagnet with an AF gap of order of U . As U decreases,
the Mott–Heisenberg antiferromagnet progressively evolves into a Slater antiferro-
magnet with an ex-potentially small AF gap. Also, in the weak interaction limit
the AF order is destroyed at U/t = 0.676 (see Fig. 1), due to the topological
Berry phase term whose coefficient deviates from the localized spin value S = 1/2
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Fig. 1. The temperature–interaction phase diagram for the three-dimensional Hubbard

model at half filling. Depicted is the temperature Tg (pink/light gray) for the vanishing

of the gap parameter ∆c as well as the true critical temperature Tc (violet/dark gray)

at which the log-range AF order ceases to exist, signalled by vanishing of mAF. The

inset shows the details of the dependences in the weak coupling regime.

in the weak coupling limit U/t. The AF critical temperature has a maximum
at U/t ≈ 3.78. The comparison of our results with the previous work on the
subject shows that numerical methods such as dynamical cluster approximation
(DCA) [3] or dynamical mean-field theory approximation (DMFA) [4] give slightly
higher values of U/t ≈ 7.5, and U/t ≈ 10, respectively. The methods based on
a perturbation theory with respect to the interaction strength [5, 6] are unable
to reproduce the maximum in the AF critical temperature as a function of U/t.
The significantly higher values of U/t resulting from DCA and DMFA have to be
explained by the restricted ability of these methods while handling spatial fluctu-
ations. Regarding the value of maximum of the critical temperature Tc/t ≈ 0.667
found here, it agrees with the result of Monte Carlo simulations by Scalettar et
al. [7] Tc/t ≈ 0.72 and by Hirsch [8] who obtained Tc ≈ W/18t, where W = 12t is
the bandwidth for the 3D Hubbard model, i.e. Tc/t ≈ 0.666.

5. Conclusions

In conclusion, we have investigated antiferromagnetic phase diagram of the
three-dimensional Hubbard model using SU(2)×U(1) rotating reference frame de-
scription. Calculations with the Hamiltonian for interacting electrons were reduced
to calculation of functional integrals with a phase-angular action. Our implemen-
tation for the Hubbard model is consistent with the spin rotation symmetry and
simultaneously is able to reproduce the Hartree–Fock result. Finally, we have com-
pared the results of our calculations with a number of methods that were employed
by other authors.
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