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The mechanism of superconductivity generation by spin fluctuations in

the electron doped canted antiferromagnet on the triangular lattice was an-

alyzed. The underlying assumption is that the formation of the bound state

is the prerequisite of pairing. The outcome of this analysis is also valid if an

additional isotropic attraction is active but the anisotropic spin-fluctuation

mediated force decides on the symmetry of the two-particle bound state.

When the canted antiferromagnetic state is generated, the symmetry of the

point group C6v for the triangular lattice is lowered to the symmetry of C3v.

It is demonstrated that spin fluctuations definitely favor the p-wave bound

state, which transforms according to the E representation of C3v. Since the

inversion is not an element of C3v, the parity is not a good quantum number

and thus the predicted paired state will be a mixture of singlet and triplet.

Such a scenario may be relevant to physics of superconducting triangular

cobaltates or organics.

PACS numbers: 71.10.Fd, 74.20.Mn, 75.50.Ee

1. Introduction

Correlated electron systems on triangular lattices have attracted much inter-
est recently. Layered organic superconductors κ-(BEDT-TTF)2X and the cobal-
tate superconductor NaxCoO2 ·yH2O belong to this class of materials. The interest
in their properties stimulated the revival of already ongoing theoretical research on
some prototypical models for spins 1/2 and on some models for correlated electrons
defined on the triangular lattice.

The antiferromagnet on the triangular lattice is frustrated because this lat-
tice is not bipartite. Rather surprisingly, it was demonstrated a few years ago that
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the antiferromagnet on the triangular lattice reveals long-range order which takes
the form of the canted (120◦) spin ordering [1–4].

As it has been shown for the t–J model (tJM) on the square lattice, if binding
is strong enough it is sufficient to consider a moving hole pair bound by a chain
of spin fluctuations, in order to understand the mechanism which determines the
symmetry of pairing in a doped antiferromagnet (AF) [5]. This will not change if
the tendency towards binding is strengthened by a supportive isotropic short-range
interaction.

2. Model

In order to achieve the goal of understanding the mechanism selecting the
pairing symmetry in the canted AF (CAF), it is sufficient to discuss the formation
and propagation of a spin bipolaron (SBP) which represents the motion together
of two holes in a single cloud formed by spin fluctuations. Some kind of spatially
confining potential for holes is formed by that cloud. The construction of a SBP
for the tJM [6] which we choose to analyze the doped AF on the triangular lattice
will be now briefly outlined. All details can be found elsewhere [7]. The cobaltates
are actually electron-doped systems. Nevertheless, the model which is used to
analyze them can be translated by means of the particle–hole transformation into
the hole doped version which is more convenient to analyze. The SBP is defined
as the variational wave function obtained by finding, in a restricted Hilbert space
spanning some basis states, the groundstate of an unperturbed Hamiltonian H

(tJ)
0 ,

which is a part of the full Hamiltonian for the tJM. The restricted Hilbert space
applied in the construction of a SBP associated with a pair of nearest neighbor
(NN) sites consists of states obtained by allowing two holes created at these sites
in the CAF state to hop. A restriction which is put on this hopping is that the
holes may not follow each other along the same path, which guarantees that they
behave as two particles in a potential well. The formation of this well should be
attributed to the increase in the exchange energy induced by the creation of spin
fluctuation in the CAF spin background during the hole motion. By definition,
H

(tJ)
0 obeys all the above formulated constraints and acts within the restricted

space. The wave function |Ψ〈i,j〉〉 of a SBP created at a pair of NN sites i, j is
given by the lowest eigenstate of the unperturbed Hamiltonian.

The symmetry and the momentum of a two-hole bound state can be found at
the level of a single SBP approximation by analyzing in the basis formed by SBP
wave functions the non-vanishing off-diagonal matrix elements of the remaining
“perturbed” part H

(tJ)
1 of the tJM. These matrix elements define an effective tight

binding Hamiltonian which describes hopping of SBPs between different pairs of
NN sites 〈i, j〉 and 〈m,n〉,

Heff =
∑

〈i,j〉,〈m,n〉
τ〈i,j〉〈m,n〉b

†
〈i,j〉b〈m,n〉, (1)

where
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τ〈i,j〉〈m,n〉 = 〈Ψ〈i,j〉|H(tJ)
1 |Ψ〈m,n〉〉. (2)

The operator b†〈i,j〉 (b〈m,n〉) creates (annihilates) a SBP at the pair of NN sites
i, j (m, n).

Due to lack of space we will not embark now on the detailed analysis of pro-
cesses which contribute to Heff . That task has been performed elsewhere [7]. Here
we shall concentrate on some symmetry aspects of the problem. The processes
which give rise to coherent propagation of a SBP should conserve the total spin of
the system. It follows from that constraint that within our approach the effective
Hamiltonian Heff may contain only terms generating hopping of a SBP between
links, the ends of which have been initially occupied in the classical version of
the CAF state by the same pair of spins for example by spins pointing into the
“12 o’clock” direction and into the “8 o’clock” direction. Such sites form within
the initial triangular lattice a honeycomb sublattice. An even more convincing ar-
gument which supports the statement that SBPs can move in the CAF background
only within a honeycomb sublattice is based on the fact that the existence of the
the CAF order induces an effective size reduction of the first Brillouin zone because
the size of the elementary cell in the real space increases. Objects as SBPs, the
motion of which does not destroy the underlying spin background, can propagate
only in such a way so that the energy dispersion determined by that propagation
reveals the periodicity of the reduced Brillouin zone. That requirement will be
fulfilled if and only if SBPs move inside one of honeycomb sublattices. It turns
out that the SBP propagation is to great extent governed by a process which in an
oversimplified version looks as follows. One of two holes created at NN sites moves
by one lattice to another site inside the same honeycomb sublattice. The second
hole moves next to the site initially occupied by the first hole. It is not difficult to
realize that such a process does not create defects in the spin background and that
it gives rise to an effective shift of a SBP between linked bonds in the honeycomb
sublattice. In the presence of the CAF state the C6v symmetry of the triangular
lattice is lowered to C3v which is also the symmetry of honeycomb sublattices
within which SBPs can propagate coherently. Thus we can use representations of
C3v and representations of its subgroups to classify eigenstates of the tight binding
Hamiltonian (1). For the case of a single SBP, the groundstate of Heff appears
at zero momentum, and is doubly degenerate because it transforms according to
the representation E of C3v. Since functions x and y transform according to
that symmetry, the notion of p-wave can be applied to the expected bound and
paired states. By applying the particle–hole transformation we may show that the
two-electron groundstate of the related electron-doped version of the model trans-
forms according to the same representation E of C3v.

3. Discussion and conclusions

In order to summarize the main result obtained in this paper, we proceed
now to discuss the structure of the predicted paired state obtained by solving Heff .
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The formation of the CAF state in the triangular lattice gives rise to the symmetry
breakdown of the inversion symmetry which induces mixing of singlet with triplet
in the paired state. In order to show that the mixing will indeed take place in
the anticipated by us two-particle bound state represented in the framework of
the effective model by a single SBP state we will analyze its structure with some
detail. Let us choose as basis vectors a1 and a2 in the underlying triangular lattice
the vector (1,0) and the vector (1/2,

√
3/2). We concentrate now on the electron

doped case. It is clear that by the virtue of the particle–hole transformation the
definition and the idea of SBPs can be also applied in the electron doped case to
represent wave functions of additional electrons confined by the string effect in the
vicinity of NN sites where they have been initially created. Analogously as in the
hole-doped case these initial sites label SBPs. For the purpose of analyzing spin
of the predicted bound state, in this part of the paper we formally treat a SBP
created at a pair of NN sites i, j as a product of two single spin polarons with spins
antiparallel to the directions of the magnetization at those sites in the undoped
CAF. After performing the Fourier transformation we obtain the representation
for the first of two degenerate boundstates,

|Ψ1〉 ∼
∑

k

[(
3
4

+
√

3
4

i

)
(coska1 − coska2)p

†
k,↓p

†
−k,↑

+

(√
3

4
− 3

4
i

)
(sinka1 + sin ka2)p

†
k,↓p

†
−k,↑

−
(√

3
4

+
i
4

)
(sinka1 + sin ka2)p

†
k,↓p

†
−k,↓ + . . .

]
|Ω〉, (3)

where operators p†... create single spin polarons and |Ω〉 represents the undoped
CAF which plays the role of a vacuum. Among three operator products which
create two polarons with vanishing total momentum, the first creates a singlet
and next two create triplets.

Before any conclusions for physical systems can be drawn from the above
presented result, it should be verified by means of more elaborate methods, e.g.
the exact diagonalisation.
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