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We investigate properties of the two-dimensional Penson–Kolb model

with repulsive pair hopping interaction. In the case of a bipartite square

lattice this interaction may lead to the η-type pairing, when the phase of

superconducting order parameter changes from one lattice site to the neigh-

boring one. We show that this interaction may be responsible for the onset

of superconductivity also for a triangular lattice. We discuss the spatial

dependence of the superconducting order parameter and demonstrate that

the total momentum of the paired electrons is determined by the lattice

geometry.

PACS numbers: 74.20.–z, 74.20.Rp

1. Introduction

The Penson–Kolb model [1] can be derived from a general microscopic tight-
-binding Hamiltonian. In such approach, the Coulomb repulsion leads to the re-
pulsive pair hopping interaction J . However, the pair hopping integral may also
be considered as the effective model parameter that takes on both positive and
negative values [2–4]. In the case of a square lattice the superconducting corre-
lations occur independently of the sign of J . Superconductivity that occurs for
repulsive pair hopping interaction is usually referred to as η-type pairing. In this
phase the total momentum of the paired electrons is (π, π). As a result, the orig-
inal translational invariance is broken, and the superconducting order parameter
alters from one site to the neighboring one. Although, the η-pairing is robust
against the diamagnetic pair-breaking [5], the flux quantization and the Meissner
effect appear in this state [6].

Here, we demonstrate that the repulsive pair hopping interaction may lead
to a stable superconducting phase also on a non-bipartite triangular lattice.
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2. Model and details of calculations

We investigate the two-dimensional Penson–Kolb model

H = −t
∑

〈i,j〉,σ
c†iσcjσ + J

∑

〈i,j〉
c†i↑c

†
i↓cj↓cj↑ − µ

∑

i,σ

c†iσciσ, (1)

where c†iσ creates an electron with spin σ on site i and µ is chemical potential. We
assume the repulsive pair hopping interaction J > 0.

We apply the mean-field approximation and introduce ∆i = 〈ci↓ci↑〉. As
the superconductivity induced by positive J may break the original translational
invariance, ∆i should be considered as a site dependent quantity. In the case of
η-pairing on square lattice one gets

∆i = ∆0exp(iQ ·Ri) (2)
with Q = (π, π). Here, we investigate whether a similar superconducting state
may be stable also on a triangular lattice. However, we do not assume any par-
ticular value of Q. Instead, we determine this quantity from the minimum of an
appropriate thermodynamic potential. In the momentum representation one gets

HMF =
∑

kσ

(Ek − µ)c†kσckσ − JEQ

t

∑

k

(∆∗
0c−k+Q↓ck↑ + h.c.)

+
J |∆0|2EQN

t
, (3)

where Ek = −2t[cos(kx) + 2 cos(kx
1
2 ) cos(ky

√
3

2 )]. Let us note that the ef-
fective pairing interaction Ueff = −JEQ/t depends on the momentum of the
paired electrons. The mean-field Hamiltonian can be diagonalized with the
help of the Bogoliubov transformation. The resulting thermodynamic potential
Ω = −kT ln Tr exp(−H/kT ) reads

Ω = −kT
∑

k,z∈{+,−}
ln (1 + exp(−βλkz)) +

∑

k

E−k+Q −N(µ + Ueff |∆0|2), (4)

where λk± =
Ek−E−k+Q

2 ±
√

(ηk − µ)2 + U2
eff |∆0|2 and ηk =

Ek+E−k+Q
2 . From

Eq. (4) one can easily obtain the average number of electrons 〈n〉 = − 1
N

∂Ω
∂µ as well

as the gap equation ∂Ω
∂∆0

= 0.

3. Numerical results and discussion

We have solved the gap equation and calculated the resulting potential Ω
for various Q. The left part in Fig. 1 shows that the superconducting transition
temperature Tc is the largest, when the total momentum of the paired electrons ap-
proaches the edges of the first Brillouin zone (FBZ). More precisely, Tc is maximal
when Q is equal to one of the momenta, which represent the corners of the FBZ
(points A shown in the right part of Fig. 2). This result resembles the properties of
the η-pairing on a square lattice, when Q = (π, π). The corresponding supercon-
ducting phase is thermodynamically stable since Ω(∆0 6= 0) ≤ Ω(0), which can be
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Fig. 1. Left part: kTc as a function Q. Right part: Ω calculated for kT = 0.1t and for

∆0 that has been determined from the gap equation. J = 1.87t and µ = 2.0t.

Fig. 2. Ω(∆0)/Ω(0) calculated for J = 1.87t and µ = 2.0t. The values of this ratio

are indicated as labels to isolines. Two values of Q (denoted as A and B) are explicitly

pointed out in the left part. The line labeled as min Ω shows ∆0 that minimizes Ω .

inferred from the right part in Fig. 1. One can see that Ω achieves the global min-
imum for the same values of Q, when the transition temperature is maximal. We
have found that the above results are qualitatively independent of the chemical
potential. Although the magnitudes of the superconducting transition temper-
ature and the superconducting order parameter depend of the concentration of
electrons, the total momentum of the paired electrons remains doping indepen-
dent. Therefore, we restrict the following analysis only to a few particular values
of Q. In Fig. 2 we show the isolines of the ratio Ω(∆0, kT )/Ω(0, kT ). Let us
note that Ω(0, kT ) is negative. For a fixed temperature, Ω(∆0, kT ) has a single
minimum, which clearly indicates that transition to the superconducting states is
continuous. Again we have found that the character of the phase transition does
not depend on the chemical potential. The line labeled as min Ω shows ∆0 that
minimizes the potential Ω . Consequently, this line shows the temperature depen-
dence of the superconducting order parameter. One can see that this dependence
is very similar to that obtained from the standard BCS theory.

In order to visualize the difference between the discussed above supercon-
ducting state on a triangular lattice and the η-pairing on the square lattice, we
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Fig. 3. Spatial dependence of ∆i defined in Eq. (2) calculated for Q = Q1 = ( 2
3
π, 2√

3
π)

and Q = Q2 = ( 4
3
π, 0), when Ω achieves the global minimum. Circles, squares, and tri-

angles correspond to ∆i = ∆0, ∆i = ∆0 exp(i 2
3
π) and ∆i = ∆0 exp(−i 2

3
π), respectively.

have determined the spatial dependence of ∆i. For the thermodynamically most
stable solution, ∆i takes on three distinct values, as it is shown in Fig. 3. Although
this spatial dependence visibly differs from the case of η-pairing, one can find some
common properties: When the pair and single electron hopping interactions in-
volve different sublattices, the phase of the superconducting order parameter is
different for each of the sublattices. In the case of bipartite square lattice the
system splits into two sublattices, whereas for triangular lattices there are three
sublattices. Therefore, in the repulsive Penson–Kolb model the total momentum
of electrons forming the Cooper pairs strongly depends on the geometry of the
system.
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