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Theory of self-induced resonances in asymmetric two-junction interfer-

ometer device is presented. An extension of previous theoretical approaches

contains inclusions from several asymmetries: the Josephson current ε, ca-

pacitances χ and dissipation ρ presented in an equivalent circuit. Our theory

can be useful to determine asymmetry parameters always present in lightly

damped asymmetric SQUIDs made from low- and high-TC materials.
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1. Introduction

Superconducting quantum interference devices (SQUIDs) are the most em-
ployed superconductive electronic circuits in practical applications [1]. With
the discovery of high-temperature superconductors (HTS) also high-temperature
SQUIDs have been developed [2]. This class of devices, although less sensitive
than the most competitive low-temperature SQUIDs, have been used in several
applications, where portability and/or positioning as much as high working tem-
peratures are needed. Moreover, the demonstration of an unconventional symme-
try of the order parameter in YBaCuO (YBCO) [3] opened new horizons for using
the so-called pi-SQUIDs in superconductive electronics. As a consequence, a full
knowledge of properties of HTS SQUIDs is at great importance.

The outline of the paper is the following: firstly, we outline the model Hamil-
tonian, and present equations for asymmetric dc-SQUIDs. Next, we consider the
method and assumptions which have been made. Finally we discuss obtained
results and their relevance to the experimental situations.
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2. Model

We start with defining an asymmetric superconducting quantum interference
device (ASQUID) which consists of two Josephson junctions. Each of them has
a critical current ICi and a parallel capacitance Ci. We assume also that single
junction contains a parallel linear resistance Ri and interferometer is fed by an
external source Ic. The self-inductances of the junctions in ASQUID are equal to
L1 and L2 and Hamiltonian contains three parts [4]:

H = HC +HJ +HM. (1)
First term on the right side of Eq. (1) defines electrostatic energy
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1
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)2 (
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2
2

)
, (2)

where φi is a phase difference across the i-th junction and Φ0 = hc/2e is the flux
quantum. The second term is the Josephson energy

HJ = EJ,1 (1− cos φ1) + EJ,2 (1− cos φ2) , (3)
where EJ,i = (Φ0/2π) IC,i. To complete the set of equations for the interferometer
one should take into account that loop current IL can contribute to the flux and
as a consequence magnetic energy takes the form

HM =
1
2

(
Φ0

2π

)2 (φ2 − φ1 − φext)
2

L+
, (4)

where L+ = L1 + L2. We introduce the following parameters: C1,2 = (1± χ)C,

EJ,1,2 = (1± ε)EJ, L1,2 = (1± λ) L/2, where dimensionless anisotropy quanti-
ties χ, ε, and λ describe the relative deviations of the model parameters from the
corresponding average values C, EJ and L. Considering dissipation due to a quasi-
particle current we add parallel resistances Ri ∼ α−1

i . We assume that SQUID
is current excited by a constant current source. This foundation leads to an ad-
ditional term γi in both equations. Finally, we write the equations for ASQUID,
after applying the Euler–Lagrange equation to the Lagrangian and renormaliza-
tion, in dimensionless form

(1 + χ)φ̈1 + (1 + ρ)αφ̇1 + (1 + ε) sin (φ1) = γ1 +
φ2 − φ1

β
, (5)

(1− χ) φ̈2 + (1− ρ)αφ̇2 + (1− ε) sin (φ2) = γ2 +
φ1 − φ2

β
. (6)

Choice of parameters χ = ε = ρ = 0 stands for the fully symmetric case.

3. Results

We shall analyze two coupled differential Eqs. (5) and (6) for the case β ≤ 1
that coupling between the two junctions of the interferometer is strong. We assume
voltage sinusoidal variations with dc component V , ac amplitude v, frequency ω

and phase ϕ: V (t) = V + v cos(ωt + ϕ). Extracting from Eqs. (5) and (6) the dc,
sinωt and cos ωt Fourier components we get
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Fig. 1. The normalized resonant current Iexc versus normalized voltage V/Vr, with

different values of the anisotropy parameters, capacitance χ, the Josephson current

ε, and dissipation ρ for second resonance (n = 2). Black curves refer to absence of

anisotropy parameters.

Iexc =
αδ2ω

2n
, (7)

where ω̃ = ω/ωr = V/Vr is the normalized voltage and ωr is the resonant fre-
quency.
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= 1 + ε2. (8)

The influence of the dissipative current ρ (see Fig. 1) manifests by the decrease
in the maximum value of the resonant current, for given n-th resonance mode,
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when we increase the anisotropy parameter. However, even small deviations of
the capacitative anisotropy parameter χ from equilibrium have a major impact on
behavior of the ASQUID. For small values of χ, at fixed value of the damping pa-
rameter Γ ≡ (αωr)

−1 there are two possible solutions even for the first resonance.
In symmetric SQUIDs this situation was present for higher resonances n ≥ 3 [4].

4. Discussion

To produce the asymmetry of the Josephson current in the low-TC inter-
ferometer we can change the area of the junction A and in consequence the critical
current can be written as IC = jCA, where jC is the critical current density.
However, from the Ambegaokar–Baratoff [5] formula we know that the product
ICRN, where RN is the resistance in normal state, has an invariant value which
depends only on the material in fixed temperature. Thus changing the value of the
Josephson current we alter the resistance of the junction (∆IC ∼ ∆C ∼ ∆R−1,
see Fig. 2).

Fig. 2. Current voltage characteristics (Iexc–V/Vr) for several asymmetric configura-

tions of the SQUIDs related to the Ambegaokar–Baratoff formula, first resonance n = 1,

Γ = 20, β = 0.1.

For high-TC SQUIDs the simple rule ICRN = const valid for low-TC SQUIDs
does not apply in the case of interferometers based on the symmetric bicrystal
c-axis [001] devices. In such ASQUIDs, ICRN is proportional to the critical current
density JC at low values and stays roughly constant at high-JC values and changing
one single parameter is now possible [6].
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5. Summary

In this paper we have presented an analytical approach that revealed the
nature of the resonances in the presence of several asymmetries: the Josephson
current ε, capacitances χ, and dissipation ρ. Our calculations imply that deviations
of the capacitances from the average value in SQUID have profound impact on
physics of the system. We have found that our theory can be useful to determine
asymmetry parameters present in lightly damped ASQUIDs also produced from
HTS materials.
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