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We consider a spin-rotationally invariant Hubbard model. The original

electron operator is presented in the charge-spin-fermion U(1)×SU(2) fac-

torized form. The factorization procedure is given in terms of the emergent

gauge fields. As a result, the electron appears like a composite object con-

sisting of strongly fluctuating phase field and spatially rotating spin axis.

Furthermore, we elaborate microscopically on the form of possible pairing

states.

PACS numbers: 71.27.+a, 71.10.Fd, 74.20.Rp

1. Introduction

The Hubbard Hamiltonian is considered as a most purposeful one for study-
ing the strongly interacting electronic systems. It contains the essential back-
ground in the physics of the interacting electrons. We consider the Hubbard
Hamiltonian in the spin-rotational invariant form [1]. To keep the spin-rotationally
invariance we rewrite the action of the system transforming it into new bosonic
and fermionic variables. The relevant transformations are based on the spin-charge
separation that allows the electrons to behave as a bound state of two indepen-
dent components, spinon and chargon. Using the U(1) and SU(2) transformations
we factorize the electron operator in terms of the emergent gauge fields. Using
the functional integration formalism [2] we construct the grand canonical par-
tition function of the system. The effective fermionic action will be generated
by cumulant expansion. To look for a pairing interaction we concentrate on the
second-order cumulant containing the four fermion operators [3]. With connection
to the spin-fermionic part we derive microscopically the final form of the action in
both nearest neighbors (n.n.) and next nearest neighbors (n.n.n.) cases. After the
Schwinger boson transformations it is obvious that in the nearest neighbors case
there is no evidence for pairing interactions. For the next nearest neighbors case
there is a possibility for singlet or triplet pairing state. The corresponding pairing
gaps are expressed as a function of bosonic CP1 Green functions and spin-fermionic
part appearing in the form of the Schwinger-boson and Schwinger-fermion valence
bond operators, respectively.
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2. The second-order cumulant and angular-bosonic correlator

Our Hamiltonian of the Hubbard model is H = Ht + Ht′ + HU , where

Ht + Ht′ = −
∑
α

∑

rr′
(tδr−r′,d + t′δr−r′,d′)

[
c†α(rτ)cα(r′τ) + h.c.

]
(1)

and HU =
∑

r Un↑(r)n↓(r). The vectors d and d′ are the lattice vectors
for n.n. and n.n.n. cases, respectively, and U stands for the Coulomb repul-
sion. Following [3] we rewrite the interaction term in the spin-rotational invari-

ant form HU = U
∑

r

{
1
4n2(rτ)− [Ω(rτ) · S(rτ)]2

}
, where Ω is the unit vec-

tor and Sa
c (rτ) = 1

2

∑
αβ c†α(rτ)σ̂a

αβcβ(rτ) is the spin operator (a = x, y, z)
with σ̂a being the Pauli matrices. The spin-charge decomposition is given by
cα(rτ) =

∑
β z(rτ)Rαβ(rτ)hβ(rτ), where z(rτ) is the new unimodular phase

U(1) variable [3, 4], Rαβ(rτ) is the spin-rotation SU(2) matrix [4] and hα(rτ) are
new fermionic variables [3]. With U(1) and SU(2) transformations we unraveled
the electron operator to a composite object consisting of fermions attached to the
fluctuating gauge potentials. The SU(2) transformation is done by means of the
Hopf map R(rτ)σ̂zR†(rτ) = σ̂Ω . U(1) and SU(2) gauge fields play a specific role
in the formulated problem. They are responsible for the electron pairing similar to
the phonons in the BCS superconductors. Regarding the Hubbard Hamiltonian it
is evident that these fields, the collective high energy modes in the superconducting
(SC) system, couple to the fermion density type term via the hopping amplitude t

[3]. We evaluate the effective interaction between fermions by tracing out the gauge
degrees of freedom. We write the partition function as Z =

∫
[Dh̄Dh]e−Seff [h̄,h],

where we have integrated over the charge and angular variables. The effective
action in the exponential is Seff [h̄, h] = − ln

∫
[DΩDφ]e−S[Ω,φ,h̄,h] [3]. We consider

the second order cumulant generated from the effective action. After averaging
over the charge U(1) field we obtain

S(2)[h̄, h] = S
(2)
1 [h̄, h] + S

(2)
2 [h̄, h]

= − t2

U

∑

〈rr′〉

∑

αα′,γγ′

∫ β

0

dτ 〈Mα′α,γγ′〉 h̄α′(rτ)hα(r′τ)h̄γ(r′τ)hγ′(rτ)

− t′2

U

∑

〈〈rr′〉〉

∑

αα′,γγ′

∫ β

0

dτ
〈
M ′

α′α,γγ′
〉
h̄α′(rτ)hα(r′τ)h̄γ(r′τ)hγ′(rτ), (2)

where Mα′α,γγ′(rτ, r′τ |r′τ, rτ) = [R†(rτ)R(r′τ)]α′α[R†(r′τ)R(rτ)]γγ′ and 〈...〉
denotes averaging over U(1) and SU(2) fields. We define the SU(2) matrix R(rτ)
in the complex projective field

R(rτ) =

[
ζ1(rτ) −ζ̄2(rτ)

ζ2(rτ) ζ̄1(rτ)

]
, (3)

where ζ(rτ) are complex CP1 variables. They are satisfying: |ζ1(rτ)|2 +
|ζ2(rτ)|2 = 1.
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3. The Schwinger transformation

In this section we introduce the antiferromagnetic Schwinger boson
AFM-B valence bond operators (see, for instance [5, 6]) F(rτr′τ) =
ζ̄1(rτ)ζ1(r′τ) + ζ̄2(rτ)ζ2(r′τ) and A(rτr′τ) = ζ1(rτ)ζ2(r′τ) − ζ2(rτ)ζ1(r′τ).
Then, the product of two SU(2) matrices can be written in the composed form

R†(rτ)R(r′τ) =

[
F −Ā
A F̄

]
. (4)

Consequently, the matrix M̂ takes the following form:

M̂(rτ, r′τ |r′τ, rτ) =




FF̄ FĀ −FA FF
−ĀF̄ −ĀĀ ĀA −ĀF
AF̄ AĀ −AA AF
F̄F̄ F̄Ā −F̄A F̄F




. (5)

The saddle-point evaluations for the external potential, coupled to the fermions
via the Zeeman-type term [3], give a staggering charge-gap parameter and our lat-
tice is a cross-match of two fundamental ferromagnetic sublattices. In particular,
〈Sz

h(r)〉 = (−1)r∆c, where ∆c is the charge gap and (−1)r = eiQ·r. Here, Q is de-
fined as having the value π/a in all components and r is the position of the lattice
site. We analyze the form of the fermionic action by applying the Schwinger-boson
transformation to the R(rτ) matrix: R(rτ) = (iσ̂y)R̃(rτ), where R̃(rτ) is the
transformed form of the rotation matrix. Thus the angular-bosonic correlator (5)
takes the symmetrized form and can be easily connected to the fermionic part.
For the nearest neighbors term we obtain

S
(2)
1 [h̄, h] =

∑

〈rr′〉

∫ β

0

dτ
[
g1N(rτ)N(r′τ)− g2T̄ (rτr′τ)T (rτr′τ)

]
, (6)

where N(rτ) =
∑

α h̄α(rτ)hα(rτ) is the particle number operator at the site r,
the operator T (rτr′τ) is the antiferromagnetic fermion AFM-F bond operator de-
fined as T (rτr′τ) = 1√

2

∑
α hα(rτ)hα(r′τ). The coupling coefficient g1 in the first

term of the action is positive: g1 = 2t2

U (f2 + 2g2
0) > 0, and therefore we have

the possibility for the charge density wave (CDW) order. The Green functions
f and g0 figuring in the expression of the g1 are defined in the CP1 representa-
tion as: f = 〈ζ(rτ)ζ(r′τ)〉 and g0 = − 〈

ζ(rτ)ζ̄(rτ)
〉
. The second-order term in

the action shows a possible spin–triplet correlation mechanism. That is evident
because the coefficient g2 > 0 and is given by g2 = 2t2

U (2f2 + g2
0). A simple

Hartree–Fock (HF) decoupling of the four-fermion term in Eq. (6) gives the so-
lution for the triplet fermionic gap parameter ∆t(rτr′τ) =

〈
T̄ (rτr′τ)

〉
. On the

other hand, the gap function is defined as ∆c
αβ(rτr′τ) = 〈c̄α(rτ)c̄β(r′τ)〉. We

consider all possible pairings: singlet ∆c
↑↓, ∆c

↓↑ and triplet ∆c
↑↑, ∆c

↓↓. In the near-
est neighbors case, for the singlet gap function ∆S ≡ ∆c

↑↓ −∆c
↓↑ we obtain ∆S =
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−2
√

2f 〈z̄(rτ)z̄(r′τ)〉 〈T̄ (rτr′τ)
〉
, where the complex variable z(rτ) = eiφ(rτ) de-

scribe the charge parametrization with |z(rτ)|2 = 1. As follows from definition,
the function ∆S is even under spin reversion transformation while the operator T ,
in the right hand side, is odd. The second source for possible pairings is the action

S
(2)
2

[
h̄, h

]
=

∑

〈〈rr′〉〉

∫ β

0

[
g′1N(rτ)N(r′τ)− g′2F̄ (rτr′τ)F (rτr′τ)

−g′2Ā(rτr′τ)A(rτr′τ)− g′3T̄ (rτr′τ)T (rτr′τ)
]
. (7)

As in the previous case the first term is responsible for CDW order in the system,
because g′1 > 0: g′1 = 2t′2

U ( 1
2g2 + 1

2f2
0 + g2

0). Here, the Green function g is defined
as usual: g = − 〈

ζ(r)ζ̄(r′)
〉

and the anomalous on-site Green function f0 is: f0 =
〈ζ(r)ζ(r)〉. In the second term the AFM-F Schwinger bond operator F (rτr′τ) is
defined as F (rτr′τ) = 1√

2
[h̄↑(rτ)h↑(r′τ) + h̄↓(rτ)h↓(r′τ)]. The coefficient g′2 is

given by g′2 = 2t′2
U (3g2 +f2

0 ) and is positive, hence after mean field decoupling this
term contributes to the kinetic energy of the electrons. From the action (7) we
can obtain the spin–singlet superconducting electronic correlations because g′2 > 0.
The HF decoupling of the third four fermion term gives the corresponding pairing
gap parameter ∆s(rτr′τ) =

〈
Ā(rτr′τ)

〉
, where we introduced the AFM-F bond

operator A(rτr′τ) as A(rτr′τ) = 1√
2
[h↑(rτ)h↓(r′τ)−h↓(rτ)h↑(r′τ)]. For the sin-

glet order parameter we have ∆S = ∆c
↑↓−∆c

↓↑ = −2
√

2g 〈z̄(rτ)z̄(r′τ)〉 〈Ā(rτr′τ)
〉
.

The form of the action (7) could be also in favor of the spin–triplet pairing interac-
tions, if the coefficient g′3 > 0: g′3 is given by: g′3 = 2t′2

U (2f2
0−2f2), where the Green

functions g0 and f are defined above. Detailed direct calculations of corresponding
gap functions justify the existence of mentioned pairing correlations in the next
nearest neighbors case. Spin–triplet correlations are ∆(1)

T = ∆c
↑↓ + ∆c

↓↑ = 0 and

∆(2)
T = ∆c

↑↑ + ∆c
↓↓ = −2

√
2f 〈z̄(rτ)z̄(r′τ)〉 〈T̄ (rτr′τ)

〉
. With switching the long-

-order mechanism of correlation, the electronic system shows the pairing abilities
and both singlet and triplet correlations become possible. Future detailed micro-
scopic calculations [7] of correlation functions from functional derivation technics
will show the straightness of the pairing interactions in competition with the charge
density wave fluctuations in (7) and clarify the role of the dominating pair ordered
regions in the scenario of the superconducting phase transition.
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