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Nonmagnetic impurity on-site potential leads to the resonant states in

a d-wave superconductor for the unitary scattering limit. We extend the

above study to include a momentum dependence of the impurity potential

and discuss the existence and number of resonant states for a tetragonal

anisotropy of the scattering potential.
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1. Introduction

Controlled impurity substitution is an important tool in the identification
of a symmetry of the superconducting ground state. Particularly efficient are the
scanning tunneling microscopy (STM) measurements of the local density of states
(LDOS) which probe directly and with atomic precision excited states in the vicin-
ity of the impurity atom. STM measurements of LDOS around single Zn [1] or Ni
[2] impurity atom as well as Cu vacancy [3] in superconducting Bi2Sr2CaCu2O8+δ

revealed a distinct fourfold symmetry of LDOS specific for a d-wave supercon-
ductor. Although, the main features of complex STM patterns in cuprates are
captured by a model on-site impurity scattering [4–6], studies of extended impu-
rity potentials [7–9] are motivated by some still unresolved features of LDOS in
these compounds [10]. We continue the issue of anisotropic in the reciprocal space
impurity potential [11–15] and discuss its effect on the impurity-bound states in
high-temperature superconductors.

2. Momentum-dependent impurity potential

We consider quasiparticle scattering in a d-wave superconducting state by a
momentum-dependent nonmagnetic impurity potential
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v̂(k, k′) = [vi + vaf(k)f(k′)] τ̂3, (1)
where vi, va represent the isotropic and anisotropic amplitudes of the potential,
respectively. We rewrite vi and va in terms of an overall impurity potential v and
a potential partition parameter α (0 ≤ α ≤ 1) which divides v into isotropic and
anisotropic channels: vi = αv, va = (1− α) v. The symmetry of the potential
is determined by the momentum-dependent function f(k), which vanishes when
integrated over the Fermi surface (FS) momenta 〈f〉 =

∫
FS

dSkn(k)f(k) = 0,
where n(k) is a normalized angle resolved FS density of states,

∫
FS

dSkn(k) = 1.
τ̂0 is the identity and τ̂i (i = 1, 2, 3) are the Pauli matrices in the particle–hole
space. We are particularly interested in a tetragonal anisotropy of the impurity
potential, which may correspond to the potential of the scattering center in the
high-temperature superconductor. Therefore, we study the case of the anisotropy
functions f(k) = sgn(cos 2lϕ) and f(k) = sgn(sin 2lϕ), where l is an integer num-
ber, which are the basis functions of the C4v one-dimensional irreducible represen-
tations.

3. Local density of states

We discuss the effect of the impurity scattering potential (1) on the quasipar-
ticle resonant states by analyzing the local density of states at zero temperature

N(r, ω) = − 1
π

Im

[∑

k

Ĝ0(k, ω) + δĜ(r, r, ω)

]

11

, (2)

which is given by the diagonal element of the retarded Green function of a pure
superconducting system Ĝ0(k, ω) modified by the impurity-induced change of the
spatial Green function δĜ(r, r, ω). The Green function of a uniform superconduc-
tor reads

Ĝ0(k, ω) = (ωτ̂0 − ξkτ̂3 −∆kτ̂1)
−1

, (3)
where ξk is the quasiparticle energy in the normal state and ∆k is the supercon-
ducting order parameter. The position-dependent part of the Green function is
determined in a simplified T-matrix approach appropriate for a single impurity
effect

δĜ(r, r, ω) =
∑

k,k′
ei(k−k′)rĜ0(k, ω)T̂ (k, k′, ω)Ĝ0(k′, ω), (4)

where the T-matrix is given by a self-consistent equation

T̂ (k, k′, ω) = v̂(k,k′) +
∑

k′′
v̂(k, k′′)Ĝ0(k′′, ω)T̂ (k′′, k′, ω). (5)

Due to the separable form of the impurity potential (1) the T-matrix factorizes
into four matrix components T̂i(ω) [12]:

T̂ (k, k′, ω) = T̂0(ω) + T̂1(ω)f(k)f(k′) + T̂2(ω)f(k) + T̂3(ω)f(k′) (6)
and yields a simple formula for the local density of states
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Fig. 1. Relative density of states N(r, ω)/N0 at the impurity site r = 0 for isotropic

(solid line) and anisotropic scattering determined by f(k) = sgn(sin 2lϕ) (a), anisotropic

scattering f(k) = sgn(cos 2ϕ) (b), and f(k) = sgn(cos 4ϕ) (c). N0 = m/2π is a single

spin normal-state density of states at the Fermi energy.

N(r, ω) = − 1
π

Im
[
Ĝ0(r = 0, ω)

+Ĝ0(r, ω)T̂0(ω)Ĝ0(−r, ω) + Ĝ1(r, ω)T̂1(ω)Ĝ1(−r, ω)

+ Ĝ1(r, ω)T̂2(ω)Ĝ0(−r, ω) + Ĝ0(r, ω)T̂3(ω)Ĝ1(−r, ω)
]
11

(7)

where

Ĝj(r, ω) =
∑

k

eikrf j(k)Ĝ0(k, ω), j = 0, 1. (8)
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Ĝ0(r, ω) is a two-dimensional Fourier transform of the uniform system Green func-
tion (3) and Ĝ1(r, ω) includes the anisotropy of the potential. The quasiparticle
excitation energy spectrum is determined by the poles of the Green function (4),
which coincide with the poles of the spatial Green function of a uniform system
Ĝ0(r, ω), and the poles of the scattering matrix T̂i(ω). Only the poles of the
T-matrix depend on the impurity potential and therefore determine the impu-
rity states. We discuss the existence, number and energy of resonant and virtual
resonant (finite quasiparticle lifetime) states at the impurity site (r = 0). In
the calculations we take a parabolic quasiparticle dispersion in a normal state,
ξk = k2/2m−εF , where εF is the Fermi energy, and the d-wave superconductivity
∆k = ∆(k2

x − k2
y). Assumption of a parabolic quasiparticle dispersion, acceptable

for overdoped cuprates, allows us to concentrate on a feature of coupled order
parameter and impurity potential anisotropies. We also put ~ = 1. Our results
are summarized in Fig. 1.

4. Results

We have evaluated LDOS at the impurity site for various potentials (1) of a
tetragonal symmetry, which according to their effect on the resonant states can be
classified into three groups defined by the anisotropy function f(k) = sgn(sin 2lϕ),
sgn(cos 4lϕ), and sgn(cos 2(2l + 1)ϕ). The impurity potential given by f(k) =
sgn(sin 2lϕ) has no effect on the LDOS at the impurity site compared to the case
of isotropic scattering. The elements T̂2 and T̂3 of the scattering matrix are equal
to zero and T̂1 is multiplied by Ĝ1(r, ω) which for r = 0 is also equal to zero.
The only nonvanishing element of the Green function δĜ(r, r, ω) is the one with
T̂0, just like in the case of isotropic impurity scattering (Fig. 1a). Therefore, the
resonant state appears at the Fermi energy only in the limit of unitary scattering
[4, 5]. Scattering by the potential determined by f(k) = sgn(cos 2(2l+1)ϕ) smears
out the density of states around the impurity and eliminates the resonant states,
which we present in Fig. 1b for l = 0. The most interesting effect is found for
f(k) = sgn(cos 4lϕ), shown for l = 1 in Fig. 1c. Except for the equal partition of
the impurity potential into isotropic and anisotropic channels (α = 0.5) we observe
two virtual resonant states which merge and become a resonant state in the limit
of unitary scattering.

5. Conclusions

Summarizing, we have found that the momentum-dependent scattering po-
tential modifies the impurity quasiparticle states. A tetragonal symmetry of the
impurity potential, possible in cuprates, can induce three different effects in the
local density of states around a scattering center. It can lead to a development of
a pair of virtual resonant states, preserve the impurity bound states generated by
the isotropic scattering potential, or destroy these states.



Resonant States . . . 157

References

[1] S.H. Pan, E.W. Hudson, K.M. Lang, H. Eisaki, S. Uchida, J.C. Davis, Nature

403, 746 (2000).

[2] E.W. Hudson, K.M. Lang, V. Madhavan, S.H. Pan, H. Eisaki, S. Uchida,

J.C. Davis, Nature 411, 920 (2001).

[3] E.W. Hudson, V. Madhavan, K. McElroy, J.E. Hoffmann, K.M. Lang, H. Eisaki,

S. Uchida, J.C. Davis, Physica B 329, 1365 (2003).

[4] A.V. Balatsky, M.I. Salkola, A. Rosengren, Phys. Rev. B 51, 15547 (1995).

[5] M.I. Salkola, A.V. Balatsky, S.J. Scalapino, Phys. Rev. Lett. 77, 1841 (1996).

[6] A.V. Balatsky, I. Vekhter, J.X. Zhu, Rev. Mod. Phys. 78, 373 (2006).

[7] A.P. Kampf, T.P. Devereaux, Phys. Rev. B 56, 2360 (1997).
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