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The electron energy spectrum of many superconducting materials is

characterised by the presence of few bands at the Fermi level. In some cases

the superconducting properties seem to be dominated by single band but in

others the many-band approach is essential ingredient of their description. In

this paper we shall study the properties of superconducting impurity placed

in a non-superconducting medium. We are interested in the evolution of su-

perconducting correlations within non-superconducting 1- or 2-dimensional

system, their dependence on the distance from impurity and changes induced

by the presence of the second band and interband scattering. We use real

space description of the material and Bogolyubov–de Gennes approach to

superconductivity.

PACS numbers: 74.20.−z, 74.81.−g, 74.90.+n

1. Introduction

The orthodox, BCS theory of superconductivity developed more than half a
century ago is restricted to single band systems. It has been extended to two-band
situation [1, 2] and since then used by numerous authors to study peculiarities
introduced by the second band and interactions between the bands. As one rep-
resentative example we cite here the work by Kondo [3], where it has been shown
that the presence of the second band with repulsive electron–electron interaction
enhances the superconducting transition temperature if two bands interact with
each other. Moreover, he pointed out that large interband interaction leads to
vanishing of the isotope coefficient — the fact which often is used as evidence
for non-phonon mechanism of superconductivity. More detailed discussion of the
many-band approaches to bulk superconductors can be found in Ref. [4] and to
small superconductors in [5].

It is the purpose of the present paper to extend, to the two-band case,
the previous study [6] of superconducting correlations in the vicinity of single
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impurity or small grain placed in non-superconducting host. Of particular interest
is the question if the two-band scenario introduces new spatial scales into the
problem and how the pair correlations induced by inter-band pair scattering will
depend on the distance from impurity. The existence of pair correlations does not
require thermodynamic limit. They appear also in small systems, even around a
single impurity with an attractive interaction (the negative-U impurity) or isolated
metallic grains [7] with the finite number of electrons and have recently been
studied experimentally (for a review see [8]).

We assume that the system under consideration can be modelled by the
discrete two-band tight-binding model in which the superconducting impurity is
placed at point r0:

H = −
∑

ij,λλ′,σ

tλλ′
ij c+

iλσcjλ′σ +
∑

i,λ,σ

(ελ − µ)c+
iλσciλσ

−
∑

λλ′
Uλλ′c

+
0λ↑c

+
0λ↓c0λ′↓c0λ′↑, (1)

where the subscripts λ = 1, 2 denote two bands, which we also call s and d bands,
operator c+

iλσ (ciλσ) creates (annihilates) electron with the spin σ =↑, ↓ in site
i ≡ ri = (xi, yi) and band λ. ελ is the electron energy in the band λ, µ is
the chemical potential. tλλ′

ij are the hopping elements and Uλλ′ > 0 attractive
interactions inside a band if λ = λ′ or between the bands λ 6= λ′. The interband
interaction we use here has the form of pair scattering.

Using mean-field Hartree–Fock–Bogolyubov decoupling and applying the
Bogolyubov–Valatin transformation

ciλ↑ =
∑

k

(
ukλ(ri)γk↑ − v∗kλ(ri)γ+

k↓
)

, (2)

ciλ↓ =
∑

k

(
ukλ(ri)γk↓ + v∗kλ(ri)γ+

k↑
)

, (3)

where ukλ(ri), vkλ(ri) are amplitudes of electrons and holes in the band λ, γ+
kσ, γkσ

the creation and annihilation operators of quasiparticles, we obtain the following
Bogolyubov–de Gennes (BdG) equations:

∑

λ′j

[
(ελ − µ) δλλ′δij + Vλλ′δijδi0 − tλλ′

ij

]
ukλ′(rj)

+
∑

λ′
∆λ′λδi0vkλ(ri) = Ekukλ(ri), (4)

−
∑

λ′j

[
(ελ − µ) δλλ′δij + V ∗

λλ′δijδi0 − tλλ′
ij

]
vkλ′(rj)

+
∑

λ′
∆∗

λ′λδi0ukλ(ri) = Ekvkλ(ri). (5)

The pairing ∆λλ′ and the Hartree–Fock potentials Vλλ′ are in turn
given in terms of the quasiparticle and quasihole amplitudes ukλ(ri), vkλ(ri)
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as ∆λλ′ = −Uλλ′f0λ = Uλλ′
∑

k ukλ(r0)v∗kλ(r0)(1 − 2fk) and Vλλ′ = −Uλλ′∑
k [u∗kλ(r0)ukλ′(r0)fk + vkλ(r0)v∗kλ′(r0)(1− fk)] and fk = [exp(βEk) + 1]−1 is

the Fermi–Dirac distribution function with β = 1/kBT . T denotes temperature.

2. Numerical results and discussion

We concentrate mainly on two-dimensional systems [6] and neglect direct
s–d hybridisation tλλ′

i,i+δ = tλδλλ′ , for our main interest here is the effect of pair
scattering (i.e. the effect of potential U12) on the properties of the system studied.
The one-dimensional system will be treated only in our discussion of the decay of
correlations. We numerically solve the BdG equations (4), (5) on a linear or square
lattice with periodic boundary conditions. Both the pair correlations f01, f02 and
the order parameters ∆λλ′ at the impurity site appear only when states with N

and N + 2 electrons are degenerate [6]. Since the parameter space of two-band
model is large we shall present results for few representative sets and leave the
systematic discussion to future publication.

In Fig. 1a the order parameters ∆λλ′ and mean total electron numbers in
two independent (U12 = 0) bands are plotted as a function of interaction strength
in first band U1 = U11 (the interaction in the second band is taken to be U22 =
U2 = 1.1U1) in two-dimensional 9 × 9 system. The bands are independent and
the differences of the results visible in Fig. 1a for both bands can be traced
back to different parameters used to describe them. It is important to realise
that due to discrete spectrum of the model there exist quasi-discrete positions of
chemical potential fulfilling the requirements of degeneracy of states necessary for
the development of superconducting correlations. In the case of 2d system and
coupled bands one finds number of such states. Figure 1b shows the influence of
moderate (U12 = 0.5t) pair scattering. For the particular value of the chemical
potential µ = −2.4t both bands do show superconducting fluctuations. Let us
note the existence of the threshold |U | values for pairing in each of the bands.
As seen in Fig. 1b coupling U12 changes lower critical value of |U | in s-band and
induces pairing correlations between the s- and d-bands. The number of electrons
in both bands changes monotonically from 18 to 20 if we increase the interaction
U11 (with U22 = 1.1U11). For coupled bands the dependence of N1 (N2) on U1 is
non-monotonic. This is due to pair scattering between the bands.

The order parameter being proportional to Ui is nonzero only at the impurity
site i. However, as mentioned earlier, the pairing correlations fiλ = 〈ciλ↓ciλ↑〉 =
−∑

k ukλ(ri)v∗kλ(ri)(1− 2fk) take on non-zero value in the vicinity of the impu-
rity. In Fig. 2 we show the spatial decay of the correlations around an impurity
in simple 1-dimensional system consisting of single negative U impurity in the
middle of chain 51 atoms long. The extent of correlations does depend on the
model parameters. In one-band case [6] the correlations are short ranged for |U |
larger than the band width. In a model with coupled bands the dependence is
more complicated and the detailed study will be presented elsewhere. Figure 2a
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Fig. 1. (a) The order parameter ∆λ and average number of electrons Nλ in a λ band

as function of U1 (and for U2 = 1.1U1) for independent bands (U12 = 0). (b) The

same for bands coupled by pair scattering U12 = 0.5t. The other parameters of this

two-dimensional 9× 9 system are ε1 = 0, ε2 = 1.2t, t1 = t, t2 = 1.5t, chemical potential

µ = −2.4t.

Fig. 2. Dependence of normalised superconducting correlations fλ(i)/fλ(0), λ = 1, 2

on the distance from the impurity site placed in the centre of one-dimensional ring with

51 sites. Other parameters: ε1 = 0, ε2 = 2t, t1 = t, t2 = 2t, U1 = 1.5t, U2 = 5t,

µ = −1.99t.

shows the dependence of normalised fiλ for two bands on the distance from the
impurity. For the chosen set of parameters correlations extend over the whole sys-
tem. We have found that for both interactions larger than the band widths i.e. for
Uλ,λ > 2z|tλ,λ|, where z is the coordination number of the lattice, the correlations
are short ranged and exponentially vanish with distance from the impurity. More
complicated behaviour can be observed for general values of parameters. Figure 2b
illustrates the effect of U12 on the correlations in the same one-dimensional system
with periodic boundary conditions. The pair scattering makes the dependence in
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both bands to be similar to each other. The correlations of coupled bands extend
over the whole space. Similar results are obtained for free boundary conditions.

3. Summary and conclusions

Our calculations indicate that the effect of the interband pair scattering
shows up as:

— an increase in superconducting fluctuations (larger ∆λ values) in the
system and increase in the region of their appearance on the (Uλ, µ) plane,

— new contributions (∆21 and ∆12) to order parameters ∆1 and ∆2 depend
on the interaction U12 and the density of states in the other band,

— due to proximity effect the pairing correlations may extend over the whole
system. The interband scattering smoothes out their spatial structure in two
bands.

It would be interesting to test some of these predictions by measuring the
local gaps of one-band and (strongly) two-band impurities or grains (like MgB2)
placed in a non-superconducting host.
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