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Differential conductance G as a function of the bias voltage V was

measured for break-junctions of superconducting Bi2Sr2CaCu2O8+δ and

YBa2Cu3O7−δ. The dependences G(V ) for both materials clearly demon-

strate the so-called dip–hump structures outside the gap region. A theory,

which suggests the charge-density-wave origin of the dip–hump structures

and explains its specific form by intrinsic inhomogeneity of cuprate materi-

als, was developed. The well-known pseudogap features in the tunnel spectra

of high-Tc oxides found both below and above the superconducting critical

temperature are also described by the theory, which testifies that both the

pseudogap and the dip–hump structures have the same origin. Competing

theories and various G(V ) peculiarities found for a number of superconduct-

ing oxides are briefly discussed.

PACS numbers: 73.43.Jn, 71.45.Lr, 74.50.+r, 74.81.–g

1. Introduction

Pseudogap (PG) manifestations in tunneling spectroscopy, photoemission
spectroscopy (ARPES), resistive and optical measurements of cuprates are well
known [1], but still remain explained ambiguously. The main problem consists in
the choice between a viewpoint that the PG comprises some kind of a precursor
phenomenon tightly connected to superconductivity as such [2] and an alternative
idea of a competition between the Cooper pair instability and some other collective
state, such as conventional or unconventional charge- or spin-density waves (CDWs
or SDWs), antiferromagnetism, stripe ordering, etc. [3]. Plenty of facts supporting
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the latter viewpoint are available, although the experimentum crucis has not been
carried out yet. Really, phase diagrams for a number of cuprate systems show
that PGs exist for underdoped compositions and gradually disappear with hole
or electron doping, accompanied by a steep rise of the superconducting critical
temperature, Tc [4–7]. The subsequent decrease in Tc in the overdoping range
seems to be unlinked to the PGs and might originate, e.g., from overscreening of
the electron–phonon-interaction matrix elements [8], if cuprate superconductivity
is due to this traditional mechanism, which seems quite plausible [9–11]. Moreover,
PGs and superconducting gaps ∆ (SGs) are frequently observed simultaneously,
although having substantially different energy scales [7, 12, 13].

The dependences of the tunnel quasiparticle differential conductance G =
dJ/dV on the bias voltage V (hereafter referred to as current–voltage character-
istics, CVCs), where J is the quasiparticle current, are especially important to
discriminate between PGs and SGs [14], serving as local probes sensitive to any
variation of the electron density of states (DOS) [1]. In particular, for cuprates,
tunnel spectroscopy measurements clearly revealed, besides other peculiarities,
several specific features, which — from our viewpoint — are interrelated and testify
that pseudogapping in these objects is actually a manifestation of CDW existence.
At low temperatures, T , it is difficult to identify CDW in the SG region |eV | < ∆
(e > 0 being the elementary charge) against the SG background. Nevertheless,
CDWs play a dominant role in the formation of the so-called dip–hump structures
(DHSs). As for the range T > Tc, the CDW-driven DOS depletion is very conspic-
uous (see description and discussion in Ref. [15]). Such consequences of the CDW
formation in superconductors are not at all an exceptionally rare phenomenon.
On the contrary, the hostile coexistence between CDWs and superconductivity
has been observed in many materials [3, 16–20]. Unidirectional CDW-like modu-
lations and checkerboard structures have been also found in a number of high-Tc

oxides [21–23], which provides a direct support for our viewpoint. At the same
time, to explain the smeared character of DHSs and PG-driven shallow DOS de-
pletions, a wide spread of the PG parameters was assumed in close agreement with
the observations [12, 21–24].

In this paper, we further develop the theory [15] of DHSs and PGs in CVCs
of s-wave superconductors, making calculations not only for non-symmetrical
S–I–N junctions (S stands for a superconductor, I for an insulator, and N for
a normal metal), but also for symmetrical (S–I–S) ones. Moreover, we exper-
imentally demonstrate the emergence of DHSs in break junctions (BJ) made of
Bi2Sr2CaCu2O8+δ (BSCCO) single crystals and YBa2Cu3O7−δ (YBCO) polycrys-
talline crystals. It has been shown that the theoretical model makes it possible to
fit experimental data adequately.

2. Theoretical synopsis
The comprehensive formulation of the self-consistent theory for a homoge-

neous partially gapped CDW superconductor (CDWS) and the analysis of the
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influence of CDWS inhomogeneity on the tunnel CVCs of junctions with such
electrodes can be found elsewhere [15, 25]. The theory demonstrates that a tun-
nel junction with a homogeneous CDWS as an electrode is sensitive to the CDW
phase ϕ (but not to the superconducting one), so that the resulting CVC can be
non-symmetric. The CVC features are the functions of the CDWS parameters,
such as the “bare” superconducting and dielectric order parameters (OPs) (∆∗

0 and
Σ̃∗

0 = Σ∗
0 eiϕ, respectively), and the degree of dielectric gapping of the Fermi sur-

face (FS) µ, as well as on the temperature T . The dispersion of each of the CDWS
parameters gives rise to the smearing of the CVC features, and, in paper [15], such
a theoretical consideration for a non-symmetric CDWS–I–N junction was made.
Here, we would like to confront the results of calculations with experimetal ones
for both symmetric and non-symmetric tunnel configurations.

It should be indicated that even in the actual experimental situation, when
it is difficult to distinguish between PGs (i.e. CDW gaps) and SGs, the higher
inhomogeneity of the former was noticed while analyzing the scanning tunnel mi-
croscopy (STM) data for BSCCO [22] (see also Ref. [23]). An ingenious renormal-
ization method, used to process the results of STM measurements for an overdoped
(Bi1−yPby)2Sr2CuO6+x sample with Tc = 15 K [12], allowed it to be seen more or
less directly.

Every averaged parameter G∗0 (it can be Σ∗
0 or ∆∗

0, or both) was regarded
distributed within the finite interval [G∗0 − δG∗0, G

∗
0 + δG∗0] according to a bell-

-shaped distribution function W (x) (see discussion in Ref. [15]). In any case, the
specific form of W (x) is not crucial for final results and conclusions.

We assume that both ∆ and Σ are s-wave OPs. Nevertheless, our approach
is also applicable to superconductors with the d-wave symmetry, which is usually
considered true for cuprates. In any case, taking the d-wave symmetry into account
would result in a more adequate description of the CVC section near V = 0,
whereas both DHS and PG features are located beyond the SG region.

The following question arises: Can SDWs bring about a similar effect? The
answer is: Yes, they can, because tunnel junctions with SDW-superconductors
should also be sensitive to the SDW phase [26]. However, the emergence of SDWs
is not accompanied by charge redistribution. At the same time, such a charge
modulation does take place in high-Tc oxides (see, e.g., Refs. [23, 27]), which ex-
plains our choice in favor of the CDW scenario. Moreover, in hole-doped cuprates,
the antiferromagnetic region of the phase diagram lies far away from the supercon-
ducting dome [4, 5], contrary to that, which exhibits the PG phenomena, making
the SDW scenario less probable.

3. Experimental results and fitting

The conductances G at low T of our BJs for a single BSCCO crystal and
a polycrystalline YBCO sample are shown in Figs. 1 and 2, respectively. As one
can see, the DHSs are very pronounced. On the basis of our theory, we fitted
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Fig. 1. Normalized experimental differential conductance G = dJ/dV for a BSCCO

break junction (thin curve) measured at T = 4.2 K, where J is the quasiparticle tunnel

current and V the bias voltage across the junction, versus the eV value, where e is

the elementary charge. The amplitude of voltage modulation δV for calculating G was

1 meV. The bold curve corresponds to the calculated eV -dependence of the dimensionless

differential conductance RG of a tunnel junction between two identical inhomogeneous

CDW superconductors. Here, R is the resistance of the junction in the normal state.

The parameters of the CDW superconductors are ∆∗
0 = 30±15 meV, Σ∗

0 = 90±35 meV,

the FS CDW-gapping parameter µ = 0.08, and the temperature T = 4.2 K. The interval

of numerical differentiantion δV = 1 meV.

Fig. 2. Experimental differential conductance for an YBCO break junction.

the experimental curve (the bold curve in Fig. 1). The agreement is quite good
and the required values of the problem parameters seem realistic. In particular,
the value of the control parameter µ turned out rather small, which is compatible
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with observed subdominant overall CDW structures on the crystal surfaces. On
the other hand, tunnel spectroscopy works as an amplifier and clearly detects both
kinds of CDW-driven features (DHSs and PGs).

4. Results of high-T calculations

The results of calculations also demonstrate that the same “CDW + inho-
mogeneity” combination explains well the PG phenomena at high temperatures,
when the DHS becomes smoothed out. An example of the transformation of the
DHS-decorated tunnel spectra into the typical PG-like ones is shown in Fig. 3
for CDWS–I–N junctions with ϕ = π (part (a)) and π/2 (part (b)). The CDWS
parameters are ∆∗

0 = 20 meV, Σ∗
0 = 50 meV, µ = 0.1, and δΣ∗

0 = 20 meV.
For this parameter set, the “actual” superconducting critical temperatures Tc of
CDWS domains lie within the interval 114–126 K, and the temperatures of the
CDW phase transition Td are in the range 197–461 K. This figure makes lucid the
transformation of CVC from the DHS-including pattern at T well below Tc into
the PG-like ones in the vicinity of Tc or above it. The asymmetric curves displayed
in part (a) are similar to the measured STM Gns(V ) dependences for overdoped
and underdoped BSCCO compositions [24].

Fig. 3. G(V )-dependences of the tunnel junction between an inhomogeneous CDWS

and a normal metal for various temperatures T . The dielectric OP phase ϕ = π (part

(a)) and π/2 (part (b)), and the dielectric OP-amplitude spread δΣ∗
0 = 20 meV. All

other parameters are indicated in the text.

Similar CDW-related features should be observed in the CVCs measured for
symmetric CDWS–I–CDWS junctions. The G(V ) dependences for this case with
the same set of parameters as in Fig. 3 are shown in Fig. 4. As is readily seen, the
transformation of the symmetric DHS pattern into the PG-like picture is similar
to that for the non-symmetric junction. This simplicity is caused by the small
parameter µ = 0.1, so that the features at eV = ±2D, which are proportional
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to µ2, are inconspicuous on a chosen scale. The value of the order of 0.1 for
µ was chosen to approximate the experimental data for BSCCO by theoretical
CVCs. Raman investigations [28] for the oxide La2−xSrxCuO4, which possesses
the maximal Tc ≈ 42 K at x = 0.15, also demonstrate that this parameter is equal
to about 0.15.

Fig. 4. The same as in Fig. 3a, but for a symmetric CDWS–CDWS junction.

The appearance of the T -driven zero-bias peaks is a salient feature of certain
CVCs displayed in Fig. 4. As is well known, this peak is caused by tunneling
of thermally excited quasiparticles between empty states with an enhanced DOS
located above and below equal SGs in symmetric S–I–S junctions. The experi-
menter should be careful not to confuse this peak with the dc Josephson peak
restricted to V = 0, which is often seen for symmetric high-Tc junctions [14]. The
distinction consists in the growth of the quasiparticle zero-bias maximum with T

up to a certain temperature, followed by its drastic reduction. On the other hand,
the Josephson peak decreases monotonously as T → Tc.

5. Conclusions

We have shown that CDW manifestations can explain both subtle DHSs
in the tunnel spectra for high-Tc oxides and large PG features observed both
below and above Tc. The DHS is gradually transformed into the PG-like DOS
depletion as T grows. Hence, both phenomena are closely interrelated, being the
manifestations of the same CDW-governed feature smeared by CDWS inhomo-
geneity. Therefore, one should not try to explain DHSs and PGs separately. The
dependences of the calculated CVCs on the CDW phase ϕ fairly well describe the
asymmetrical features of the tunnel spectra for BSCCO and related compounds.
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