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On the Phase Diagram

of Spin-Polarized Attractive

Hubbard Model: Weak Coupling Limit

A. Kujawa and R. Micnas

Solid State Theory Division, Faculty of Physics, Adam Mickiewicz University
Umultowska 85, 61-614 Poznań, Poland

The superfluid properties of the attractive Hubbard model in a Zee-

man magnetic field, and in the weak coupling regime were investigated. The

temperature and magnetic field dependences of the order parameter were

analyzed. Furthermore, the temperature vs. magnetic field and tempera-

ture vs. spin polarization phase diagrams for the 2D and 3D lattices were

obtained. For some parameters a reentrant transition was found.
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1. Introduction

Spin-polarized superfluidity (in the context of the cold atomic Fermi gases)
and unconventional superconductivity with a nontrivial Cooper pairing has re-
cently been investigated both theoretically and experimentally [1].

Due to the presence of a magnetic field, the numbers of particles with spin
down and spin up are different. This makes the formation of the Cooper pairs
across the spin-split Fermi surface with non-zero total momentum (k ↑, −k +q ↓)
(Fulde and Ferrell [2], and Larkin and Ovchinnikov [3] (FFLO) state) possible.
The pairing in spin-polarized state is very interesting not only in the context of
superconductivity, but also in that of trapped unbalanced ultracold Fermi atomic
gases and color superconductivity in high-energy physics [4–9].

In this paper we analyze the influence of a pure Zeeman effect on the super-
fluid characteristics within a lattice fermion (the spin-polarized attractive Hub-
bard) model. For sufficiently high magnetic fields we can observe a change in the
character of finite temperature transition between the superconducting (SC) and
the normal state (NS), from the second to the first order. Such a phenomenon has
been discovered for the first time by Sarma in 1963 [10]. This paper consists of
three parts. The first part gives analysis of the spin-polarized attractive Hubbard
model in the Hartree–Fock approximation. The second part presents numerical
results. In Sect. 3 we summarize the discussion.

(43)
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2. Model

The model Hamiltonian is the attractive Hubbard model (U < 0) in a mag-
netic field [11]:

H =
∑

ijσ

(tσij − µδij)c
†
iσcjσ + U

∑

i

ni↑ni↓ − h
∑

i

(ni↑ − ni↓), (1)

where ni↑ = c†i↑ci↑, ni↓ = c†i↓ci↓, tσij — hopping integral, U — the on-site inter-
action, µ — the chemical potential. The Zeeman field h can be created by an
external magnetic field (in (gµB/2) units) or by a population imbalance in the
context of the cold atomic Fermi gases.

Transforming the Hamiltonian (1) to the reciprocal space, one obtains

H =
∑

k,σ

(εσ
k − µ)c†kσckσ +

U

N

∑

k1,k2,q

c†k1↑ck1−q↑c
†
k2↓ck2+q↓

−h
∑

k

(c†k↑ck↑ − c†k↓ck↓), (2)

where the electron dispersion (with hopping only between the nearest neighbors)
is εσ

k =
∑

δ tσδek·δ = −2tσΘk, Θk =
∑

l=1...d cos(klal) (here d = 2, 3 for two-
and three-dimensional lattice, respectively), al is the lattice constant in the l-th
direction (we set al = 1 in further considerations). Now, using the Hartree–Fock
approximation (the pairing only with q = 0), we can obtain the following equation
for the superconducting order parameter (∆ = − U

N

∑
k〈c−k↓ck↑〉):

∆ = −U

N

∑

k

∆
2ωk

1
2

(
tanh

βEk↑
2

+ tanh
βEk↓

2

)
, (3)

where

Ek↓ = (−t↓ + t↑)Θk +
UM

2
+ h + ωk, (4)

Ek↑ = (−t↑ + t↓)Θk − UM

2
− h + ωk, (5)

ωk =
√

[(−t↑ − t↓)Θk − µ̄]2 + |∆|2, µ̄ = µ− Un

2
, (6)

β = 1/kBT , M = n↑ − n↓ — spin magnetization (polarization), nσ =
1
N

∑
k〈c†kσckσ〉, n = n↑ + n↓ — electron concentration.
Equation (3) takes into account the spin polarization in the presence of a

magnetic field and the spin-dependent hopping (t↑ 6= t↓) [12].
The particle number equation takes the form

n = 1− 1
2N

∑

k

−(t↑ + t↓)Θk − µ̄

ωk

(
tanh

βEk↑
2

+ tanh
βEk↓

2

)
. (7)

The equation for the magnetization is
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M =
1

2N

∑

k

(
tanh

βEk↓
2

− tanh
βEk↑

2

)
. (8)

By calculating the partition function in the usual way, we can determine the grand
canonical potential

Ω
N

=
1
4
Un(2− n)− µ +

1
4
UM2 − |∆|2

U

− 1
βN

∑

k

ln

(
2 cosh

β(Ek↑ + Ek↓)
2

+ 2 cosh
β(−Ek↑ + Ek↓)

2

)
, (9)

and also the free energy: F/N = Ω/N + µn.

3. Results

We have performed an analysis of the influence of magnetic field on superflu-
idity, based on Eqs. (3)–(9), paying special attention to the behavior of the order
parameter and the spin-up and spin-down electron density. In the following we set
t↑ = t↓ = t and use t as the unit.

Figure 1 shows the temperature vs. magnetic field phase (T−h) diagrams
for the 2D (a) and the 3D (b) lattices for a fixed chemical potential µ. Both in
2D and in 3D, a finite temperature second-order phase transition takes place to
the normal state at sufficiently low values of the magnetic field. With increasing
magnetic field, the character of the transition between the superconducting and the
normal state changes from the second order to the first order (the thick dotted line),
which starts from the tricritical point (TCP). The line of the first-order transition
has been determined numerically from the condition: Ωs = Ωn (where Ωn and
Ωs denote the grand canonical potential of the normal and the superconducting
state, respectively). The curve below the first-order transition line on the phase
diagrams (the thin dotted line) is merely the extension of the line of the second-
-order transition below TCP. The critical values of the magnetic field for a simple
cubic lattice are lower than for the square lattice. The Hartree term raises the
value of the critical magnetic field at T = 0 for the first-order transition, which
exceeds the Clogston limit [13] (hc = ∆0/

√
2, where ∆0 is the gap at T = 0,

h = 0).
It is important that the above diagrams were obtained for a fixed chemical

potential. If the number of particles is fixed instead and n 6= 1, one will obtain
two critical magnetic fields on the T−h phase diagram [14, 15]. The two critical
fields define the phase separation region between the superfluid phase with the
particle density ns and the normal state with the density of particles nn. We note
that, for a simple cubic lattice and for a weak attraction (Fig. 1b, U = −2), the
differences between the values of these two critical fields are negligible and in this
case practically only one critical field exists.
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Fig. 1. Temperature vs. magnetic field phase diagrams for U = −2. (a) 2D lattice,

µ = −1.358405, (b) 3D lattice, µ = −1.627404. The arrows indicate the tricritical point;

the thick dotted line denotes the first-order phase transition to the normal state. The

chemical potentials have been chosen to yield n ≈ 0.75 at T = 0 and h = 0.

The change in the character of the transition is clearly visible in the behavior
of the order parameter as a function of temperature, which is depicted in Fig. 2b.
We have the first-order BCS to NS transition at T = 0 (Fig. 2a). For low magnetic
fields, ∆ vanishes continuously with increasing temperature. There arise two non-
-zero solutions for the order parameter, for h = 0.23. The lower branch is unstable.
We have also found a very interesting behavior of the order parameter for fixed
h = 0.24. In this case ∆ vanishes discontinuously at T = 0.0225 (the solutions with
∆ 6= 0 become energetically unfavorable, i.e. the upper branch is metastable and
the lower branch is unstable for T > Tc) — thus we have the first-order transition.
However, for T ≥ 0.06067 the superconducting solution becomes energetically
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Fig. 2. Dependence of the order parameter on magnetic field at T = 0 (a) and tempera-

ture (b) (for three fixed values of the magnetic field), for 2D and U = −2, µ = −1.358405.

In part (b), for h = 0.23 the lower branch is unstable. For h = 0.24 the vertical dashed

line denotes the first-order phase transition to the normal state and there are two tran-

sitions in the reentrant case (at T = 0.06067 and T = 0.09891).

favorable again (transition to the SC state) and ∆ vanishes continuously (second-
order phase transition to the NS at T = 0.0998), which is clearly visible in Fig. 3b.
Such behavior points out that for sufficiently high fields a reentrant transition takes
place. Hence, the increase in temperature can induce superconductivity. Similar
results have been obtained for the 3D case (and U = −3). The behavior of the
grand canonical potential (Fig. 3a) indicates the point of the first-order transition
from the superconducting (Sarma phase (SP)) to the normal state.

Figure 4 shows the temperature vs. spin polarization (T−P ) phase diagrams
for the 2D case (a) and the 3D case (b) (P = (n↑ − n↓)/(n↑ + n↓)). One can
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Fig. 3. Grand canonical potential vs. temperature for h = 0.24 (2D case): (a) the first-

-order phase transition to the normal state, (b) the details of the reentrant transition:

from NS to SC and second-order transition from SC to NS (inset). The vertical dashed

lines mark the phase transition temperatures.

distinguish three states for the system under consideration: SP, phase separation
(PS) region and NS. PS terminates at TCP. At T ≥ 0 and P = 0 we have the
BCS phase. At T 6= 0, ∆ 6= 0 and P 6= 0, the system is in the Sarma phase (i.e.
superconductivity in the presence of the spin polarization). The transition from
SP to NS is of second order. Furthermore, we have a transition to the PS region (at
T = 0 the coexistence of the superconducting (BCS state, ∆ 6= 0, P = 0) and the
normal state (∆ = 0, P 6= 0), and for T > 0 the coexistence of SP (∆ 6= 0, P 6= 0)
and paramagnetic NS (∆ = 0, P 6= 0)). Because ∆ vanishes discontinuously for
higher magnetic fields (larger P ), the transitions both from SP to the PS region
and from the PS region to the NS are of first order (the dotted lines). Moreover,



On the Phase Diagram . . . 49

Fig. 4. Temperature vs. polarization phase diagrams for U = −2. (a) 2D lattice,

µ = −1.358405, (b) 3D lattice, µ = −1.627404. The dotted lines are the first-order

phase transition lines, ∆0 denotes the gap at T = 0 and P = 0. In (b) n ≈ 0.75.

in the PS region not only the polarizations but also the particle densities in the
SC and NS are different.

4. Conclusions

The influence of the magnetic field on superfluid properties of the attractive
Hubbard model in a weak coupling regime has been considered. The T−h and
T−P phase diagrams have been obtained for the two- and three-dimensional cases.
We can distinguish the following phases on the diagrams: the Sarma phase, the
phase separation region (between the spin-polarized superconducting state (with
ns) and the normal state (with nn)) and the normal state. In the presence of the
magnetic field the densities of states are different for the particles with spin down
and spin up. Moreover, the magnetic field destroys the superfluidity through
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the paramagnetic effect (or by a population imbalance). One can also have a
reentrant transition for sufficiently high magnetic fields on the T−h and T−P

phase diagrams (due to the presence of the Hartree term). For 2D system at h = 0,
the transition from the superconducting to the normal state is of the Kosterlitz–
Thouless (KT) type. In the case under analysis, the phase fluctuations have been
neglected. However, for weak attraction the Hartree–Fock critical temperatures
may be comparable with the KT ones.

In this paper, we have restricted the analysis to the case of s-wave pairing
only with q = 0, leaving out the case of the FFLO phase. An important limi-
tation, as far as the charged superfluid is concerned, is the neglect of the orbital
effect of a magnetic field and the magnetic field fluctuations [16]. Investigation of
the competition between the superconductivity and charge density wave diagonal
ordering (in particular at and close to the half-filled band n = 1) would also be an
interesting extension of this paper.
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