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We present the novel approach to the Bose–Hubbard model using the

U(1) quantum rotor description. We formulate a problem in the phase only

action using an effective action formalism and obtain analytical formulae for

the critical lines. We show that the nontrivial U(1) phase field configurations

have an impact on the phase diagrams. The topological character of the

quantum field is governed by terms of the integer charges — winding numbers

n. The comparison of the presented results with recently obtained quantum

Monte Carlo numerical calculations suggests that the competition between

quantum effects in strongly interacting boson systems is correctly captured

by our model.
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1. Introduction

A collection of interacting bosons on a lattice is described by the Bose–
Hubbard (BH) [1] model which captures the physics arising from the competition
between kinetic energy of bosons and their on-site interaction. More recently, it
has been realized that the Bose–Hubbard model can also be applied to bosons
trapped in so-called optical lattices [2, 3], where the on-site interaction U can
be tuned by the Feshbach resonance and nearest neighbors hopping t by the in-
tensity of the laser beams which form the optical lattice. The coarse graining
[4], mean-field theories [5], strong-coupling expansion [6], have been successfully
applied to these systems in one- [7], two- [8] and three-dimensional lattices [9].
The progress comes from better computer resources and more efficient algorithm
allows to use the quantum Monte Carlo (QMC) method for studies of the BH
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systems [10, 11]. Optical lattices offer remarkably clean access to a particular
Hamiltonian and thereby serve as a model system for testing fundamental theo-
retical concepts and providing exemplar of quantum many-body effects [12]. It is
well known that the ground state of a system of repulsively interacting bosons in a
periodic potential can be either in a superfluid state (SF) or in a Mott-insulating
state (MI), characterized by integer boson densities. Because the phase of the
order parameter and the particle number as conjugate variables are subject to the
uncertainty principle ∆φ∆n ∼ ~ [13] and the bosons can either be in the eigen-
state of particle number or phase. The eigenstate of phase is a superfluid and that
of particle number is a localized Mott insulator. Therefore, the quantum MI–SF
phase transition takes place as the particle density is shifted thus facilitating emer-
gence of the superfluid from the Mott insulating state. The aim of this paper is to
extend the mean-field approach for the Bose–Hubbard model in a way to include
particle number fluctuations effects and make the qualitative phase diagrams in
two and three dimensions more quantitative. The key point of presented approach
is to consider the representation of strongly interacting bosons as particles with
attached “flux tubes”. This introduces a conjugate U(1) phase variable, which
acquires dynamic significance from the boson–boson interaction. To facilitate this
task we employ the functional integral formulation of the theory that enables us
to perform the functional integration over fields defined on different topologically
equivalent classes of the U(1) group, i.e., with different winding numbers. Finally,
we compare our results for systems at zero temperature with the outcome of the
numerical simulations and found a very good agreement for the quantitative results
regarding the behavior as we go from the superfluid phase to the Mott insulating
phase. The outline of the paper is as follows. In Sect. 2 we introduce the model
Hamiltonian and in Sect. 3 we derive an effective U(1) action in the quantum
rotor representation. The aim of Sect. 4 is the presentation of the resulting phase
diagrams for two- and three-dimensional Bose–Hubbard systems. Finally, Sect. 5
summarizes our results and sets the outlook.

2. Model Hamiltonian

We investigate the generic model for the Mott–insulator transition the Bose–
Hubbard model

H =
U

2

∑

i

n2
i −

∑

〈i,j〉
tija

†
iaj − µ̄

∑

i

ni, (1)

where a†i and aj stands for the bosonic creation and annihilation operators that

obey the canonical commutation relations
[
ai, a

†
j

]
= δij , ni = a†iai is the boson

number operator on the site i, U > 0 is the on-site repulsion and µ̄/U = µ/U +1/2
is the shifted reduced chemical potential which controls the number of bosons.
Here, 〈i, j〉 identifies summation over the nearest-neighbor sites. Furthermore, tij
is the hopping matrix element with the dispersion for the bipartite lattice
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tk = 2t

d∑

l=1

cos kl (2)

in d dimensions. In this paper we investigate the phase transitions in simple cubic
and square lattice.

3. Method
3.1. Decoupling of the Coulomb interaction

We will adopt the method of the quantum rotor model, developed by one
of us [14], to the BH Hamiltonian. The partition function of the system could be
written in the usual form

Z =
∫

[DāDa] e−S[ā,a], (3)

where the bosonic path-integral is taken over the complex fields ai (τ) with the
action S given by

S = SB [ā, a] +
∫ β

0

dτH (τ), (4)

where

SB [ā, a] =
∑

i

∫ β

0

dτ āi (τ)
∂

∂τ
ai (τ) . (5)

Unfortunately, Hamiltonian is not quadratic in ai and we have to decouple first
— the Coulomb term in Eq. (1) by a Gaussian integration over the auxiliary
fields Vi (τ). Moreover, we split the field for static V S

i (τ) and periodic function
V P

i (τ) and introduce the scalar potential field which couples to the local particle
number through the Josephson-like relation φ̇i (τ) = V P

i (τ) , where the phase field
satisfies the periodicity condition φi (β) = φi (0) as a consequence of the periodic
properties of the V P

i (τ) field.

3.2. Gauge transformation

We perform the local gauge transformation to the new bosonic variables[
ai (τ)

āi (τ)

]
=

[
eiφi(τ) 0

0 e−iφi(τ)

] [
bi (τ)

b̄i (τ)

]
. (6)

The chief merit of the transformation in Eq. (6) is that we have managed to cast
the strongly correlated bosonic problem into a system of weakly interacting bosons,
submerged in the bath of strongly fluctuating U(1) gauge potentials (on the high
energy scale set by U). Furthermore, the path-integral includes a summation over
winding numbers

∫
[Dφ] ... ≡

∑

{ni}

∫ 2π

0

∏

i

dφi (0)
∫ φ(τ)i+2πni

φi(0)

∏

i

dφi (τ) ... (7)

and should be performed taking phase configurations that satisfy boundary con-
dition φi (β)− φi (0) = 2πni, where ni is integer.
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3.3. The partition function expressed in the phase fields variables

We parametrize the boson fields bi (τ) = b0 + b
′
i (τ) and restrict our cal-

culations to the phase fluctuations dropping the amplitude dependence. From
expansion of the trace of the logarithm we take only second term. Finally, action
is expressed only in the phase fields variable

Sph [φ] =
∫ β

0

dτ

{∑

i

[
1

2U
φ̇2

i (τ) +
1
i

µ̄

U
φ̇i (τ)

]

−
∑

i,j

eφi(τ)JijIijeφj(τ)



 , (8)

where Iij = 1 if i, j are the nearest neighbors and equals zero otherwise.
To proceed we replace the phase degrees of freedom by the complex field

ψi which satisfies the quantum periodic boundary condition ψi (β) = ψi (0). This
can be conveniently done using the Fadeev–Popov method with the Dirac delta
functional representation in a way used by Kopeć and José [15].

4. Mott insulator — superfluid phase transition

Within the phase coherent superfluid state the order parameter ΨB =
〈exp (iφi (τ))〉 in the limit β →∞ becomes

1−Ψ2
B =

1
2

∫ +∞

−∞

ρ (ξ) dξ√
2ξ̄

(
2z t

U + µ
U + 1

2

)
t
U + υ2

(
µ
U

) , (9)

with υ (µ/U) = frac (µ/U) − 1
2 , where frac (x) = x − [x] is the fractional part of

the number and [x] is the floor function which gives the greatest integer less than
or equal to x; ρ (ξ) is the density of states, where ξ is dimensionless parameter,
ξ̄ ≡ ξmax − ξ and ξmax stands for the maximum value of the dispersion spectrum
t (k). The zero temperature phase diagram of the model calculated from Eq. (9)
is given in Fig. 1. We recognize the particle–hole asymmetric — Mott-insulating
lobes similar to what was found in the literature [4, 6]. In the MI phase bosons
are incompressible ∂nB/∂µ = 0 and localized which means that the total energy
is minimized when each site is filled with the same number of atoms. Increasing
fluctuations in the phase system reduces fluctuations in the boson number on each
site according to the Heisenberg uncertainty relation. Crossing the boundary line
bosons can move from one lattice site to the next. The order parameter ΨB has
a non-vanishing value and system exhibits the long-range phase coherence. This
is opposite case to the Mott–insulator where phase coherence is lost. We see that
the qualitative shape of the lobes is not the same for 2D and 3D cases and steeper
for the two-dimensional system.

The effects of the fixed boson number nB in the system defined by nB =
N−1

∑
i 〈āi (τ) ai (τ)〉and the calculations of a phase diagram for interaction prob-

lem t/U 6= 0 have to include spatial correlations. The result for the boson density
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Fig. 1. Phase boundary between the MI and SF phases for square (darker lobes) and

cubic lattice (lighter lobes) in the space of the parameters t/U−µ/U .

Fig. 2. Boson occupation number nB at T = 0 for three-dimensional simple cubic

lattice in the space of parameters — chemical potential µ/U and hopping t/U. The

Mott insulator is found within each lobe of integer boson density. Inside the first lob on

the left the occupation number nB is equal to one, two, and three in first, second, and

third step, respectively.

nB within the region of superfluidity is given by the expression

nB =
µ

U
+

1
2
− 2Ψ2

Bυ
( µ

U

)
, (10)

where non-vanishing value of the order parameter ΨB is calculated from Eq. (9).
We see in Fig. 2 that the competition between kinetic and interaction energy is
the foundations of the quantum phase transitions in the BH model. Increasing
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the value of the hopping term (reducing the interaction energy) leads to delocal-
ization of the bosons thus the sharp steps of the MI state become indistinct and
in consequence system is superfluid. In Fig. 2 we observe the appearance of the
Mott-insulating lobes corresponding to curves from Fig. 1.

5. Summary and outlook
In this paper we have presented a study of the Mott–insulator transition of

the Bose–Hubbard model. To analyze quantum phase transitions beyond mean-
-field theory we employed a U(1) quantum rotor approach and a path-integral for-
mulation of quantum mechanics including a summation over a topological charge,
explicitly tailored for the BH Hamiltonian. The effective action formalism allows
us to formulate a problem in the phase only action and obtain analytical formu-
lae for the critical lines. We found that our results are in great accordance with
the recently published quantum Monte Carlo calculations [11]. Our calculations
also improve predictions based on the third-order expansion in t/U that become
inaccurate quite far from the tip [6].

Acknowledgments

One of us (T.K.K.) acknowledges the support by the Ministry of Education
and Science MEN under grant No. 1 P03B 103 30 in the years 2006–2008.

References

[1] M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546

(1989).

[2] D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81,

3108 (1998).

[3] M. Greiner, O. Mandel, T. Esslinger, T.W. Hansch, I. Bloch, Nature 415, 39

(2002).

[4] A.P. Kampf, G.T. Zimanyi, Phys. Rev. B 47, 279 (1993).

[5] K. Sheshadri, H.R. Krishnamurthy, R. Pandit, T.V. Ramakrishnan, Europhys.

Lett. 22, 257 (1993).

[6] J.K. Freericks, H. Monien, Phys. Rev. B 53, 2691 (1996).

[7] S.R. Clark, D. Jaksch, Phys. Rev. A 70, 043612 (2004).

[8] M. Niemeyer, J.K. Freericks, H. Monien, Phys. Rev. B 60, 2357 (1999).

[9] A. Sewer, X. Zotos, H. Beck, Phys. Rev. B 66, 140504(R) (2002).

[10] N.V. Prokof’ev, B.V. Svistunov, I.S. Tupitsyn, Phys. Lett. A 238, 253 (1998); J.

Exp. Theor. Phys. 87, 310 (1998).

[11] B. Capogrosso-Sansone, N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. B 75,

134302 (2007).

[12] I. Bloch, Nature Phys. 1, 23 (2005).

[13] W.J. Elion, M. Matters, U. Geigenmuller, J.E. Mooij, Nature 371, 594 (2002).
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[15] T.K. Kopeć, J.V. José, Phys. Rev. B 60, 7473 (1999).


