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Transition probabilities are calculated for individual and multiplet lines

between some excited states in neutral sodium by using the weakest bound

electron potential model theory. In the determination of parameters re-

quired for calculation of transition probabilities, we employed numerical non-

-relativistic Hartree–Fock wave functions for expectation values of radii in

all levels. The necessary energy values were taken from experimental energy

data in the literature. The obtained results were compared with accepted

values taken from National Institute of Standards and Technology data and

multi-configurational Hartree–Fock results given by Fischer. A good agree-

ment was observed in related excited states.

PACS numbers: 31.10.+z

1. Introduction

The alkali atoms have long served as a test system for various theoreti-
cal developments aimed at the accurate determination of spectroscopic data such
as transition probabilities, oscillator strengths, and lifetimes. In the last four
decades, the determination of spectroscopic data for neutral and ionized atomic
systems has been an active research area on account of its considerable interest
in astrophysics, plasma physics, laser physics, and thermonuclear fusion research.
Many of the modern experimental techniques still encounter difficulties in the
exact measurement of transition probabilities, oscillator strengths and lifetimes.
The results obtained from experimental methods usually have some uncertain-
ties ranging between ±10–30% arising from the component deviations including
the uncertainties of line intensity measurements, uncertainties of the temperature
determination and possible influence of self-absorption effects [1]. Moreover, it
is seen from the literature that the values measured by different experimental
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methods can yield different results for the same transitions. Many theoretical
methods exist for calculation of transition probabilities in atomic or ionic sys-
tems such as the Hartree–Fock approximations, configuration interaction methods,
R-matrix methods, semi-empirical methods and many-body perturbation theories.
The energy level calculations in especially highly lying Rydberg levels in multi-
-electron atoms or ions are always difficult problems in theoretical studies, be-
cause of indistinguishability of equivalent electrons and the necessity of taking
many configurations into account [2]. Therefore, many of theoretical methods
in the literature have presented spectroscopic data results belonging to low lying
levels rather than highly lying levels.

The multi-electron problems can be solved nearly exactly for systems with
a few electrons such as helium. More general multi-electron systems cannot be
treated with such precision. It is impossible to solve many-electron systems with-
out imposing severe approximations. However, most of the properties found in
the one-electron atom can be carried through the many-electron atoms. The alkali
atoms are multi-electron systems with a single electron outside closed shells and the
simplest systems that offer the possibility of studying core, valence, and valence–
core interactions. Therefore, they have been proving ground of truly many-electron
methodologies [3]. Recently, Zheng et al. have employed the weakest bound elec-
tron potential model (WBEPM) theory for calculations of various physical param-
eters in both alkali-metal atoms and other many-electron systems [4–10]. They
have obtained very satisfactory results with theoretical and experimental results
in the literature for calculation of spectroscopic data.

In the present article, we have calculated transition probabilities for both
individual and multiplet lines belonging to some excited levels of atomic sodium by
using the WBEPM theory. We have employed numerical non-relativistic Hartree–
Fock (NRHF) wave functions and experimental energy values in the determination
of relevant parameters required for calculation of transition probabilities.

2. Theory and calculation procedure

The WBEPM theory which is presented by Zheng et al. [11, 12] has been used
for determination of spectroscopic data such as energy levels, ionization potentials,
transition probabilities, oscillator strengths and lifetimes of excited levels in atomic
or ionic multi-electron systems. In this theory, electronic radial wave functions are
calculated as a function of the Laguerre polynomials in terms of some parameters
determined by using the experimental energy data and the expectation values of
radii. Then, some physical parameters can be calculated by using these wave
functions given by Zheng et al. [5–7, 11, 12]. The WBEPM theory is based on the
choice of zero of energy, the dynamic successive ionization and distinguishing the
weakest bounded electron from others in a given multi-electron system. By the
separation of the electrons in a given system, complex many-electron problem can
be simplified as the single-electron problem and so it can be solved easily [5–7].
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In WBEPM theory, radial wave function obtained by means of the solution
of the Schrödinger equation under non-relativistic conditions for weakest bounded
electron is given to be [5–7]:

Rnl(r) =
(

2Z∗

n∗

)l∗+3/2 [
2n∗

(n− l − 1)!
Γ (n∗ + l∗ + 1)

]−1/2

× exp
(
−Z∗r

n∗

)
rl∗L2l∗+1

n−l−1

(
2Z∗r
n∗

)
, (1)

n∗ and l∗ parameters have been given to be

n∗ = n + d and l∗ = l + d, (2)
where Z∗, n∗ and l∗ quantities are defined to be effective nuclear charge, effective
principal quantum number, and effective azimuthal quantum number, respectively.
According to the WBEPM theory, the weakest bound electron (WBE) moves in
the potential field produced by the nucleus and the non-weakest bound electron
(NWBE). This potential field can be divided into two parts, one of which is the
Coulomb potential. Because of the orbital penetration effect of the WBE, shielding
by the NWBE is not complete. Therefore, an effective nuclear charge Z∗ is used
in the Coulomb term of the potential function. The second part is the dipole
potential. This dipole moment affects the behavior of the WBE. It would make the
principal quantum number n and the angular momentum quantum number l of the
WBE replaced by the effective principal quantum number n∗ and effective angular
momentum quantum number l∗. The introduction of d effectively modifies the
integer quantum numbers n and l into non-integers n∗ and l∗. These terms differ
from the usual core polarization potential which behaves as 1

r4 asymptotically, in
that the effective dipole moment of the core is used as a parameter rather than
being derived from the polarizability of the core in the electric field of the WBE
[5–7, 11, 12].

In WBEPM theory, the determination of Z∗, n∗ and l∗ parameters is suffi-
cient for the calculation of spectroscopic data. These parameters are obtained by
solving Eq. (3) and Eq. (4) together

I = −ε =
Z∗2

2n∗2
, (3)

〈r〉 =
3n∗2 − l∗(l∗ + 1)

2Z∗
, (4)

where ε or I is defined to be the ionization energy and 〈r〉 is expectation value for
radius of the WBE. The ionization energies and expectation values for radii of all
states must be known for the parameters Z∗, n∗, l∗ to be determined. It is well
known that some difficulties in obtaining the parameters directly from theory are
still present. Therefore, Zheng has suggested that the ionization energy for the
WBE is taken from experimental energy value in literature and expectation value
of radius of the WBE is obtained from many different theoretical methods. Then,
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radial transition integral or radial matrix element between two different states can
be determined easily by using radial wave functions given in Eq. (1).

The total electric dipole transition probability from γJM to all M ′ levels of
γ′J ′ can be determined as [13]:

A(γJM → γ′J ′M ′) =
64π4e2a2

0(EJ′ − EJ)3

3h(2J ′ + 1)
S. (5)

Here, EJ′−EJ is the energy difference between relevant levels and S is the electric
dipole line strength. Moreover, the numerical coefficients apply for EJ′ − EJ in
kaysers (cm−1) and S line strength is in atomic units of e2a2

0. Line strength is
determined according to the coupling schemes and the transition types in atomic
or ionic systems. The text book given by Cowan [13] has presented in detail how
the line strength can be calculated according to considered coupling schemes and
for different type transitions. The most important quantity for the calculation of S

line strength is determination of the radial transition integral or transition matrix
elements. In order to solve the radial parts of the Schrödinger equation in multi-
-electron systems, the several approximations must be imposed. As well known,
LS coupling in light atoms is dominant coupling scheme and in this coupling
scheme the electric dipole line strength for transitions between two excited levels
can be given as [13]:√

SLS

≡
〈
[(. . . α1L1, l2)L(. . . S1s2)S]J |

∣∣∣r(1)
N

∣∣∣ | [(. . . α′1L′1, l′2)L′ (. . . S′1s2)S′]J ′
〉

= δα1L1S1,α′1L′1S′1δss′(−1)S+J ′+L1+l′2 [J, J ′, L, L′]1/2

×
(

L S J

J ′ 1 L′

)(
L1 l2 L

1 L′ l′2

)
P

(1)
l2l′2

, (6)

P
(1)
lilf

= l>〈ni, li|r4|nf , lf〉 =
∫ ∞

0

rk+2Rnili(r)Rnf lf (r)dr. (7)

P
(1)
lilf

quantity in Eq. (7) is known to be radial transition integral or transition
matrix element. In this work, we employed the WBEPM theory for 〈ni, li|r4|nf , lf〉
matrix element given in Eq. (7). In the WBEPM theory, for a transition from the
level (ni, li) to the level (nf , lf), the expectation value of rk or radial transition
integral is given as [5–7]:

〈ni, li|rk|nf , lf〉 =
∫ ∞

0

rk+2Rnili(r)Rnf lf (r)dr

= (−1)nf+ni+lf+li

(
2Z∗f
n∗f

)l∗f (
2Z∗i
n∗i

)l∗i (
Z∗f
n∗f

− Z∗i
n∗i

)−l∗f −l∗i −k−3
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×
[
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]−1/2 [
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(
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(

Z∗f
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)−m1−m2

×Γ (l∗f + l∗i + m1 + m2 + k + 3)×
S∑

m3=0

(
l∗i − l∗f + k + m2 + 1

n∗f − l∗f − 1−m1 −m3

)

×
(

l∗f − l∗i + k + m1 + 1

n∗i − l∗i − 1−m2 −m3

)

×
(

l∗i + l∗f + k + m1 + m2 + m3 + 2

m3

)
, (8)

where S = min{nf − lf −1−m1, ni− li−1−m2} and k > −l∗f − l∗i −3. The papers
given by Zheng et al. have presented much detailed knowledge about WBEPM
theory.

3. Results and conclusions

The atomic transition probabilities for multiplet and individual lines between
some excited states of neutral sodium have been calculated by using the weakest
bound electron potential model theory. This theory is an efficient method espe-
cially for transitions between excited levels. In the WBEPM theory, reliability of
the results depends on Z∗, n∗ and l∗ parameters. These parameters have been de-
termined by using experimental ionization energy and expectation values of radius.
Since experimental ionization energy data are very precise, determination of the
expectation values of the radii is much more crucial than energy values. Therefore,
in order to calculate expectation values of radii in this study, we have employed nu-
merical NRHF wave functions [14] more sophisticated than the numerical Coulomb
approximation (NCA) wave functions [15] which are commonly employed in the
WBEPM theory literature. The experimental ionization energy values have been
taken from National Institute of Standards and Technology (NIST) [16].

Our transition probability results for multiplet and individual lines are given
in Table. The results of transition probability calculated by using the WBEPM
theory have been compared with accepted values taken from NIST [17] which con-
tains recommended values for many transitions and multi configurational Hartree-
Fock (MCHF) results given by Fischer [18]. Experimental and theoretical data
for comparisons are quite limited for especially highly excited states which are
considered in this study. Moreover, some data have not been tested sensitively for
both the multiplet and the individual lines especially in transitions belonging to
highly excited levels. The accuracy ranges of accepted values taken from NIST are
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TABLE

Atomic transition probabilities and comparison with the accepted values from

NIST and MCHF values for sodium (×108 s−1).

Transitions This MCHF Acc. val.

work (Ref. [16]) (Ref. [15])

1s22s22p63p2P → 1s22s22p64s2S 2.54 · 10−1 2.61 · 10−1 2.64 · 10−1

1s22s22p63p2P 3/2 → 1s22s22p64s2S1/2 1.69 · 10−1 1.71 · 10−1 1.76 · 10−1

1s22s22p63p2P 1/2 → 1s22s22p64s2S1/2 8.53 · 10−2 8.73 · 10−2 8.80 · 10−2

1s22s22p63p2P → 1s22s22p63d2D 5.31 · 10−1 5.07 · 10−1 5.14 · 10−1

1s22s22p63p2P 3/2 → 1s22s22p63d2D5/2 5.31 · 10−1 5.07 · 10−1 5.14 · 10−1

1s22s22p63p2P 3/2 → 1s22s22p63d2D3/2 8.85 · 10−2 8.45 · 10−2 8.57 · 10−2

1s22s22p63p2P 1/2 → 1s22s22p63d2D3/2 4.44 · 10−1 4.23 · 10−1 4.29 · 10−1

1s22s22p63d2D → 1s22s22p64p2P 1.53 · 10−3 1.59 · 10−3 1.58 · 10−3

1s22s22p63d2D3/2 → 1s22s22p64p2P 3/2 1.54 · 10−4 1.602 · 10−4 1.59 · 10−4

1s22s22p63d2D3/2 → 1s22s22p64p2P 1/2 1.51 · 10−3 1.57 · 10−3 1.57 · 10−3

1s22s22p63d2D5/2 → 1s22s22p64p2P 3/2 1.38 · 10−3 1.44 · 10−3 1.43 · 10−3

1s22s22p63d2D → 1s22s22p64f2F 1.42 · 10−1 1.40 · 10−1 1.40 · 10−1

1s22s22p63d2D3/2 → 1s22s22p64f2F 5/2 1.32 · 10−1 1.31 · 10−1 1.31 · 10−1

1s22s22p63d2D5/2 → 1s22s22p64f2F 1/2 1.42 · 10−1 1.40 · 10−1 1.40 · 10−1

1s22s22p63d2D5/2 → 1s22s22p64f2F 5/2 9.49 · 10−3 9.35 · 10−3 9.35 · 10−3

1s22s22p63d2D → 1s22s22p65f2F 4.73 · 10−2 4.702 · 10−2 4.70 · 10−2

1s22s22p63d2D3/2 → 1s22s22p65f2F 5/2 4.41 · 10−2 4.389 · 10−2 4.38 · 10−2

1s22s22p63d2D5/2 → 1s22s22p65f2F 7/2 4.73 · 10−2 4.702 · 10−2 4.70 · 10−2

1s22s22p63d2D5/2 → 1s22s22p65f2F 5/2 3.15 · 10−3 3.134 · 10−3 3.13 · 10−3

1s22s22p65s2S → 1s22s22p65p2P 1.63 · 10−2 1.407 · 10−2 1.43 · 10−2

1s22s22p65s2S1/2 → 1s22s22p65p2P 3/2 1.63 · 10−2 1.408 · 10−2 1.43 · 10−2

1s22s22p65s2S1/2 → 1s22s22p65p2P 1/2 1.63 · 10−2 1.404 · 10−2 1.42 · 10−2

1s22s22p64d2D → 1s22s22p65p2P 6.33 · 10−4 6.98 · 10−4 6.22 · 10−4

1s22s22p64d2D5/2 → 1s22s22p65p2P 3/2 5.73 · 10−4 6.308 · 10−4 5.62 · 10−4

1s22s22p64d2D3/2 → 1s22s22p65p2P 1/2 6.26 · 10−4 6.92 · 10−4 6.16 · 10−4

1s22s22p64d2D3/2 → 1s22s22p65p2P 3/2 6.36 · 10−5 7.028 · 10−5 6.24 · 10−5

1s22s22p64d2D → 1s22s22p65f2F 2.65 · 10−2 2.628 · 10−2 2.59 · 10−2

1s22s22p64d2D5/2 → 1s22s22p65f2F 7/2 2.65 · 10−2 2.627 · 10−2 2.59 · 10−2

1s22s22p64d2D3/2 → 1s22s22p65f2F 5/2 2.47 · 10−2 2.454 · 10−2 2.42 · 10−2

1s22s22p64d2D5/2 → 1s22s22p65f2F 5/2 1.76 · 10−3 1.751 · 10−3 1.73 · 10−3

1s22s22p64f2F → 1s22s22p65d2D 5.26 · 10−4 5.779 · 10−4 5.75 · 10−4

1s22s22p64f2F 7/2 → 1s22s22p65d2D5/2 5.01 · 10−4 5.506 · 10−4 5.48 · 10−4

1s22s22p64f2F 5/2 → 1s22s22p65d2D3/2 5.26 · 10−4 5.776 · 10−4 5.75 · 10−4

1s22s22p64f2F 5/2 → 1s22s22p65d2D5/2 2.53 · 10−5 2.75 · 10−5 2.74 · 10−5
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TABLE (cont.)

Transitions This MCHF Acc. val.

work (Ref. [16]) (Ref. [15])

1s22s22p64f2F → 1s22s22p66d2D 2.20 · 10−4 2.461 · 10−4 2.46 · 10−4

1s22s22p64f2F 7/2 → 1s22s22p66d2D5/2 2.09 · 10−4 2.345 · 10−4 2.34 · 10−4

1s22s22p64f2F 5/2 → 1s22s22p66d2D3/2 2.20 · 10−4 2.460 · 10−4 2.46 · 10−4

1s22s22p64f2F 5/2 → 1s22s22p66d2D5/2 1.04 · 10−5 1.171 · 10−5 1.17 · 10−5

1s22s22p65p2P → 1s22s22p66s2S 1.57 · 10−2 1.604 · 10−2 1.61 · 10−2

1s22s22p65p2P 3/2 → 1s22s22p66s2S1/2 1.04 · 10−2 1.068 · 10−2 1.07 · 10−2

1s22s22p65p2P 1/2 → 1s22s22p66s2S1/2 5.26 · 10−3 5.358 · 10−3 5.36 · 10−3

1s22s22p65d2D → 1s22s22p66p2P 2.63 · 10−4 2.599 · 10−4 2.52 · 10−4

1s22s22p65d2D5/2 → 1s22s22p66p2P 3/2 2.38 · 10−4 2.351 · 10−4 2.28 · 10−4

1s22s22p65d2D3/2 → 1s22s22p66p2P 1/2 2.61 · 10−4 2.572 · 10−4 2.50 · 10−4

1s22s22p65d2D3/2 → 1s22s22p66p2P 3/2 2.65 · 10−5 2.613 · 10−5 2.54 · 10−5

1s22s22p65f2F → 1s22s22p66d2D 4.04 · 10−4 4.428 · 10−4 4.43 · 10−4

1s22s22p65f2F 7/2 → 1s22s22p66d2D5/2 3.85 · 10−4 4.217 · 10−4 4.22 · 10−4

1s22s22p65f2F 5/2 → 1s22s22p66d2D3/2 4.04 · 10−4 4.429 · 10−4 4.43 · 10−4

1s22s22p65f2F 5/2 → 1s22s22p66d2D5/2 1.92 · 10−5 2.108 · 10−5 2.11 · 10−5

1s22s22p66p2P → 1s22s22p67s2S 5.97 · 10−3 6.045 · 10−3 6.05 · 10−3

1s22s22p66p2P 3/2 → 1s22s22p67s2S1/2 3.97 · 10−3 4.026 · 10−3 4.03 · 10−3

1s22s22p66p2P 1/2 → 1s22s22p67s2S1/2 1.99 · 10−3 2.019 · 10−3 2.02 · 10−3

1s22s22p66p2P → 1s22s22p68s2S 2.64 · 10−3 2.242 · 10−3 2.25 · 10−3

1s22s22p66p2P 3/2 → 1s22s22p68s2S1/2 1.76 · 10−3 1.492 · 10−3 1.50 · 10−3

1s22s22p66p2P 1/2 → 1s22s22p68s2S1/2 8.84 · 10−4 7.5 · 10−4 7.52 · 10−4

1s22s22p66d2D → 1s22s22p67p2P 1.21 · 10−4 1.173 · 10−4 1.14 · 10−4

1s22s22p66d2D5/2 → 1s22s22p67p2P 3/2 1.09 · 10−4 1.061 · 10−4 1.03 · 10−4

1s22s22p66d2D3/2 → 1s22s22p67p2P 1/2 1.19 · 10−4 1.160 · 10−4 1.13 · 10−4

1s22s22p66d2D3/2 → 1s22s22p67p2P 3/2 1.21 · 10−5 1.179 · 10−5 1.15 · 10−5

1s22s22p66d2D → 1s22s22p67f2F 2.71 · 10−3 2.550 · 10−3 2.55 · 10−3

1s22s22p66d2D5/2 → 1s22s22p67f2F 7/2 2.71 · 10−3 2.550 · 10−3 2.55 · 10−3

1s22s22p66d2D3/2 → 1s22s22p67f2F 5/2 2.53 · 10−3 2.38 · 10−3 2.38 · 10−3

1s22s22p66d2D5/2 → 1s22s22p67f2F 5/2 1.80 · 10−4 1.700 · 10−4 1.70 · 10−4

1s22s22p66d2D → 1s22s22p68f2F 1.54 · 10−3 2.106 · 10−3 1.95 · 10−3

1s22s22p66d2D5/2 → 1s22s22p68f2F 7/2 1.54 · 10−3 2.106 · 10−3 1.95 · 10−3

1s22s22p66d2D3/2 → 1s22s22p68f2F 5/2 1.43 · 10−3 1.966 · 10−3 1.82 · 10−3

1s22s22p66d2D5/2 → 1s22s22p68f2F 5/2 1.02 · 10−4 1.404 · 10−4 1.30 · 10−4

1s22s22p67p2P → 1s22s22p68s2S 2.65 · 10−3 2.676 · 10−3 2.67 · 10−3

1s22s22p67p2P 3/2 → 1s22s22p68s2S1/2 1.76 · 10−3 1.782 · 10−3 1.78 · 10−3

1s22s22p67p2P 1/2 → 1s22s22p68s2S1/2 8.87 · 10−4 8.94 · 10−4 8.92 · 10−4
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TABLE (cont.)

Transitions This MCHF Acc. val.

work (Ref. [16]) (Ref. [15])

1s22s22p67p2P → 1s22s22p69s2S 1.18 · 10−3 1.166 · 10−3 1.09 · 10−3

1s22s22p67p2P 3/2 → 1s22s22p69s2S1/2 7.87 · 10−4 7.764 · 10−4 7.25 · 10−4

1s22s22p67p2P 1/2 → 1s22s22p69s2S1/2 3.95 · 10−4 3.903 · 10−4 3.64 · 10−4

1s22s22p68p2P → 1s22s22p69s2S 1.31 · 10−3 1.604 · 10−3 1.28 · 10−3

1s22s22p68p2P 3/2 → 1s22s22p69s2S1/2 8.78 · 10−4 1.068 · 10−4 8.52 · 10−4

1s22s22p68p2P 1/2 → 1s22s22p69s2S1/2 4.41 · 10−4 5.359 · 10−4 4.27 · 10−4

very sensitive as 2–4%. It can be seen from Table that our results being presented
in this work for transition probabilities calculated by using WBEPM theory are
in agreement with accepted values from NIST and MCHF results.

The both theoretical and experimental determination of transition probabil-
ities for multi-electron systems is an important and difficult problem in atomic
physics. While the calculation procedure for the systems with a few electrons can
be carried out easily, the calculations become more difficult and complex in the
case of increasing numbers of electrons. It is not easy to deal with these multi-
-electron systems using well known standard methods, since many configurations
and orbital basis-set functions may be necessary to be taken into account to obtain
accurate results for especially highly excited levels. Therefore, many of the used
methods have considered only low lying levels which are very insufficient for prac-
tical and astrophysical applications. Many theoretical methods do not consider
fine-structure effects and only provide multiplet results. Moreover, the most of
theoretical and experimental data in the literature are generally restricted only
to transitions involving low lying levels. The studies of physical parameters such
as transition probabilities, oscillator strengths and lifetimes of alkali metal atoms,
heavy metal atoms and many valence electron systems in the literature which have
been carried out by Zheng et al. using WBEPM theory demonstrate the reliability
of present method. The determination of the expectation values of the radii is very
crucial in the WBEPM theory. Thus, to obtain more sensitive and reliable results,
we have employed the numerical NRHF wave functions for the expectation values
of radii in all relevant excited states of neutral sodium. Previously, we have em-
ployed NRHF wave functions for determination of relevant parameters in atomic
nitrogen [19, 20], lithium [21], oxygen [22], fluorine [23], and potassium [24] and
have obtained very satisfactory results in calculation of transition probabilities
and oscillator strengths.

In this work, we also have obtained higher transition probabilities than those
obtained in previous works for transitions between excited states. We have seen
that by using numerical non-relativistic Hartree–Fock wave functions for expec-
tation values of radii, the calculation of transition probabilities gives results in
agreement with literature. The use of the WBEPM theory is advantageous for



Calculations of Transition Probabilities . . . 1627

much more complicated systems, especially for those in highly lying states. Ac-
cording to the WBEPM theory, transition probability values will be better, if the
expectation value of radius belonging to the levels is accurate enough.
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