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This article presents a theoretical and numerical discussion of the re-

flection and transmission analysis through a lossy left-handed material slab

embedded between two semi-infinite dielectric media. The properties of the

lossy left-handed material are given in detail and the required equations for

the electromagnetic plane wave propagation are derived to solve the prob-

lem. The main important contribution of this article is the characterization

of left-handed material that is different from its counterpart known in the

literature. After introducing the left-handed material slab, the analytical

solution is found for the powers carried by an electromagnetic wave. Then,

the reflected, the transmitted, and the loss power are computed in terms of

the incidence angle, the frequency, and the slab thickness in the numerical

results with the emphasis on the loss factor.

PACS numbers: 04.30.Nk, 41.20.Jb, 78.20.Ci

1. Introduction

The left-handed materials (LHM) which have a negative permittivity and
permeability have been receiving an important attention in the electromagnetics’
community due to the possibility of construction at the microwave, millimeter-
wave, and optical frequencies. Such materials are not natural, but they are artifi-
cially manufactured at the given frequencies to illustrate the negative permeability
and permittivity. First of all, the LHM were theoretically proposed by Veselago
in 1968 [1]. In his study, this remarkable material was defined and the general
properties of wave propagation in the LHM medium are presented. Then, Pendry
et al. showed how the negative-permittivity materials could be realized from ar-
rays of wires in 1996 [2] and negative-permeability materials from arrays of split
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rings in 1999 [3]. Recently, Smith et al. produced the composite materials hav-
ing a negative permittivity and permeability using the combinations of split rings
and wires, and did several microwave experiments to illustrate that the proper-
ties of this material are unlike from any existing material in 2000 [4]. Shelby et
al. performed the experimental observation for the negative index of refraction
on the LHM at microwave frequencies in 2001 [5]. Conceptual and speculative
ideas for potential applications of the LHM were suggested, and physical remarks
and intuitive comments were provided in [6]. Kong studied the electromagnetic
wave interaction with stratified LHM isotropic media [7]. In his study, general
formulations for the wave interaction with stratified media were given, and the
field solutions of guided waves in stratified media were obtained. The reflected
and transmitted powers due to the interaction of electromagnetic waves with a
lossless LHM slab were presented by Sabah et al. in 2006 [8]. The transfer matrix
method was used in the analysis to find the formulations in closed form. Also,
the effects of the structure parameters, incidence angle and the frequency on the
reflected and the transmitted powers were analyzed numerically.

In this study, the loss effects on the wave propagation through a lossy LHM
slab are investigated in detail. Specifically, the reflected, the transmitted, and
the loss power are computed and presented both analytically and numerically.
The lossy LHM slab is sandwiched between the two semi-infinite dielectric media.
The incident electric field is assumed as an electromagnetic plane wave with the
perpendicular polarization. The electric and magnetic fields in all regions are
determined using the Maxwell equations. Then, imposing the boundary conditions
at the interfaces, the relationship among the incident, reflected and transmitted
power can be found easily. Finally, some examples and case studies can be found
in the numerical results to show the effects of the loss factor on the mentioned
powers.

2. Theory and analysis

Let us consider an incident electric field of perpendicular polarization to be
impinging on the LHM slab with the incidence angle θi as shown in Fig. 1. In the
analysis, exp(jωt) time dependence is assumed and it is suppressed throughout
this work. The total perpendicularly polarized electric fields in all regions can be
written as

E =





ayEi[exp(−γixx)][exp(−γizz) + R exp(γizz)], z ≤ 0,

ay[exp(−γsxx)][A exp(−γszz)] + B exp(γszz)], 0 ≤ z ≤ d,

ayTEi exp (−(γtxx + γiz(z − d))) , z ≥ d,

(1)

where γi, γs, γt are the propagation constants, Ei is the amplitude of the incident
electric field, A and B are the amplitudes of the electric fields in the LHM slab,
d is the slab thickness, R and T are the complex reflection and transmission
coefficients. In all representations, the subscripts i, s, and t stand for the incident,
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Fig. 1. The geometry of the lossy LHM slab between two lossy dielectric media.

slab, and transmitted media, respectively. In general, the propagation constant γ

in the lossy materials is expressed as

γ = jkc = jβ − α = jω

√
µ0µrε0

(
εr + j

σ

ωε0

)
, (2)

where kc is the complex wave number (kc = β +jα), α is the attenuation constant,
β is the phase constant, µ0 and ε0 are the free-space permeability and permittivity,
µr and εr are the relative permeability and the relative permittivity of the lossy
material, and σ is the electric conductivity of the lossy material, respectively. From
Eq. (2) we have

α2 − β2 = −ω2µ0µrε0εr = −ω2µε, (3)

2αβ = ωµ0µrσ = ωµσ, (4)
where µ and ε are the permeability and permittivity of the given material. If we
solve Eq. (3) and Eq. (4) together for α and β, four possible solutions are obtained
as

α = ∓ω
√

µε

√√√√1
2

[√
1 +

( σ

ωε

)2

− 1

]
, (5)

β = ∓ω
√

µε

√√√√1
2

[√
1 +

( σ

ωε

)2

+ 1

]
. (6)

In this study, the phase constant is positive in the right-handed material
(RHM) (βRHM > 0) and it is negative in the LHM (βLHM < 0). However, the
attenuation constant is always positive or zero in RHM and LHM (α ≥ 0). Thus,
the complex wave number can be written under the consideration of Eq. (2) as
follows:

kc = β + jα (for RHM), (7)

kc = −β + jα (for LHM), (8)
where α and β are the positive real numbers in Eq. (7) and Eq. (8). As mentioned
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before, the phase constant is negative in LHM. For example, in the lossless case
where σ = 0 and α = 0, the phase constant becomes β = −ω(µε)1/2 which is the
common knowledge assumed in many studies [1–8].

Now, imposing the boundary conditions at the interfaces the reflection and
transmission coefficients mentioned in Eq. (1) can be obtained easily. Thus, they
can be expressed as

R =
R01 + R12 exp(j2kcszd)
1 + R01R12 exp(j2kcszd)

, (9)

T =
4 exp(jkcszd)

(1 + r01)(1 + r12)[1 + R01R12 exp(j2kcszd)]
, (10)

in which R01 and R12 are the Fresnel reflection coefficients

R01 =
1− r01

1 + r01
, R12 =

1− r12

1 + r12
, (11)

where for TE waves

r01 =
µikcsz

µskciz
, r12 =

µskctz

µtkcsz
(12)

and for TM waves

r01 =
εikcsz

εskciz
, r12 =

εskctz

εtkcsz
. (13)

Here, kcmz (m = i, s, t) is the z-component of the complex wave number and it
can be written as for the configuration given in Fig. 1:

kcmz =

√
ω2µ0µrmε0

(
εrm + j

σm

ωε0

)
− k2

cix, (14)

where kcix (kcix = kci sin θi) is the x-component of the complex wave number of
the incident electric field.

The z-component of the incident, the reflected, and the transmitted power
can be represented as follows:

Piz =
∣∣∣∣
kciz

µi
E2

i

∣∣∣∣ , Prz =
∣∣∣∣
kciz

µi
E2

r

∣∣∣∣ , and Ptz =
∣∣∣∣
kctz

µt
E2

t

∣∣∣∣ , (15)

where Er (= REi) is the amplitude of the reflected electric field and Et (= TEi)
is the amplitude of the transmitted electric field. If the incident electric field is
normalized to unity, the conservation of the power allows defining the loss power
as

Ploss = 1−
(∣∣RTE,TM

∣∣2 +
∣∣∣∣
kctzµi

kcizµt

∣∣∣∣
∣∣TTE,TM

∣∣2
)

. (16)

Let us note that LHM mentioned in this study is defined using conventional
lossy dispersive medium parameters as seen in Eqs. (2), (5), and (6). In the
literature, LHMs are described using hypothetical medium, Lorentz, Drude, cold
plasma, and etc. parameters as in [9–15]. Consequently, LHM is identified using
different approach distinct from the classifications presented in the literature. In
conclusion, the suggested approach is the main significant contribution of this
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article and it is not found in the literature review of the electromagnetic plane
wave propagation in the presence of LHM studies.

3. Numerical results

In this section, the effects of the loss factor, σ, on the behavior of the powers
are presented numerically for the perpendicular polarization (TE wave). To verify
the results used in these computations, firstly the conservation of power given
in Eq. (16) is satisfied for all examples. Secondly, a transmission line equivalent
model is derived for the structure given in Fig. 1 [16]. It is seen that both methods
give the same numerical values for all computations. Thus, the results are verified
by means of two concepts, the conservation of power and the transmission line
equivalent model.

The reflected (Pr), the transmitted (Pt), and the loss (Ploss) power are cal-
culated as a function of the incidence angle, the frequency and the slab thickness.
In the calculations, the operation frequency was chosen by an arbitrary decision
to be f0 = 10.8 GHz to explore the characteristics of the mentioned powers in the
microwave frequency band. The first and the last materials given in Fig. 1 are
assumed to be lossless materials (σi = σt = 0) and the permeabilities of them are
equal to the permeability of the free space, µi = µt = µ0.

In the first example, it is considered that the first and the last materials
are glass and mica whose relative permittivities are 8.0 and 7.0, respectively. The
permeability and permittivity of the LHM slab are selected to be µs = −1.5541µ0

and εs = −4.4739ε0, respectively, to provide the approximate impedance matching
between the LHM slab and the last material for the given arrangement. The slab
thickness is assumed to be a quarter-wavelength long at the operation frequency
f0. Figure 2 presents the reflected, the transmitted, and the loss power for the
perpendicular polarization as a function of the incidence angle for TE wave. From
Fig. 2a, the reflected power changes from zero to 0.4 for the incidence angle less
than 68.79◦ for all electric conductivity values. This is the critical angle for the
given configuration. When the incidence angle greater than or equal to this angle,
Pr becomes unity, Pt and Ploss become zero. From Fig. 2b, Pt almost reaches
the value of unity at the incidence angle of 37◦, when the electric conductivity is
σs = 10−4 S/m. Therefore, this angle is the quasi-Brewster angle in which the
reflection and the loss power are nearly zero and the transmitted power is about
the unity for this structure. From Fig. 2c, as the conductivity increases, Ploss also
increases, but Pt decreases as seen in Fig. 2b. Furthermore, Ploss closes to zero
when σs = 10−4 S/m. As it is seen, Pr is not much affected from the changing in
the conductivity for this configuration. However, Pt and Ploss are so much affected
from the variation in the conductivity.

As the second example, frequency response of the powers is considered. The
relative permittivities of the first and the last materials are selected to be 1.0
(free-space) and 7.0 (mica), respectively. The permittivity and permeability of the
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Fig. 2. The reflected (a), the transmitted (b), and the loss power (c) for TE wave as a

function of the incidence angle.

LHM slab, and the slab thickness are the same with the previous example. The
angle of incidence is assumed 30◦. The reflected, the transmitted, and the loss
power for TE wave versus the frequency are depicted in Fig. 3. As it can be seen
from Fig. 3a, Pr changes periodically in the different range when σs = 10−3 S/m
and σs = 10−4 S/m. On the other hand, when σs = 10−2 S/m, it shows a
decreasing inclination up to 5 GHz and after that it changes again periodically.
The frequency response of Pt is remarkably sinusoidal for the small values of the
electric conductivity (i.e. σs = 10−3 S/m and σs = 10−4 S/m). But, it is about the
value of 0.2 when σs = 10−2 S/m. From Fig. 3c, Ploss increases up to 5 GHz and
after this frequency it shows a slightly periodic behavior for the high conductivity
value given in this computation. It varies as a slightly periodic function when
σs = 10−3 S/m and also it is about zero when σs = 10−4 S/m. Thus, the loss
factor σ which changes the behavior of the powers plays an important role in the
variation of them. It is obviously seen from the figure that the high percentage
of the incident power appears as a loss in the LHM slab when the conductivity is
high (i.e. σs = 10−2 S/m). At this condition, Pr is less affected from the changes
in the conductivity on the contrary of Pt and Ploss.

In the last example, the effect of the slab thickness on the powers is observed.
The permittivity and permeability of the all materials are the same with the second
example. The incidence angle is 60◦. Figure 4 points out the variation of the slab
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Fig. 3. The reflected (a), the transmitted (b), and the loss power (c) for TE wave

versus frequency.

thickness in Pr, Pt, and Ploss for TE wave. Figure 4a corresponds to the reflected
power. It is observed that the characteristic of Pr for this arrangement behaves
like an oscillatory function for all electric conductivity values. Let us note that
Pr does not change significantly after d = 1.5 cm and it is around 0.3, when σs =
10−2 S/m. In addition, Pt has an almost periodically decline characteristic when
σs = 10−4 S/m. It shows an oscillatory decreasing behavior when σs = 10−3 S/m.
On the other hand, at the same value of the conductivity, Ploss shows an oscillatory
increasing behavior. However, Pt decays like an exponential function and Ploss

varies like an increasing function for the high value of the conductivity given in
this example. Furthermore, the loss power changes around zero for the smallest
value of the conductivity. It is observed that the reflected and the transmitted
power are directly related with the loss factor. Finally, the same explanation as
in the previous example can be stated when the conductivity is high.

It is confirmed that the similar numerical results can be obtained as shown
in Figs. 2–4 for the incident wave with the parallel polarization.
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Fig. 4. The reflected (a), the transmitted (b), and the loss power (c) for TE wave

against the slab thickness.

4. Conclusions and discussions

In this work, the reflection and transmission characteristics of the electro-
magnetic radiation propagation through a lossy LHM slab are studied in detail
with the effects of the loss factor. First of all, the structure of the lossy LHM
slab between two lossy dielectric media is arranged and the structure parameters
are defined. Then, the required equations for the propagation constant, the com-
plex wave number, the phase constant, and the attenuation constant are derived.
Later, the reflection and transmission coefficients are obtained in the closed form.
After that, the incident, the reflected, and the transmitted power are given and the
conservation of the power is determined in the existence of the loss power. Finally,
the reflected, the transmitted and the loss power as a function of the incidence
angle, the frequency, and the slab thickness are studied numerically to observe the
effects of the loss factor on them. As it can be seen from the theoretical and the
numerical results, if the loss factor changes, the characteristic of the powers will
be affected from this change. The amount of this change depends on the charac-
teristic of the structure. Thus, we can say that the loss factor which changes the
behavior of the powers plays an important role in the variation of these powers.
The loss effects (low and high power losses) can easily be observed from the numer-
ical results and they can be optimized in the optimization process by re-arranging
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the structure parameters. Similar behaviors were observed in Ref. [16]. In that
study, LHM was defined using the Lorentz and Drude parameters. Therefore, it
can be said that the results achieved in this study agree and are compatible with
the results obtained in Ref. [16]. Therefore, the suggested approach can be used to
define and characterize LHMs. In addition to these explanations, the Fabry–Perot
resonances can be seen in the obtained numerical results. The reflections can be
nearly ignored and it can be achieved to the total transmission at this resonance
condition. Furthermore, to obtain high transmission, some tunable structures can
be designed by tuning the fraction of the thickness of LHM slab. Thus, the results
obtained here can be helpful to design new devices, apparatuses and/or compo-
nents at the millimeter wave, optical, and microwave regimes. Furthermore, these
results open a way to think how the availability of the losses in LHM materials will
change the functionality of a device with LHM slabs. Moreover, this study will
make a foundation for future works and provide some insight into the potential
applications of LH materials and/or LHM slab.
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