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Considering that the microparticle movements take place on fractal

curves, the wave–particle duality is studied in the fractal space-time the-

ory (scale relativity theory). The Nottale model was extended by assuming

arbitrary fractal dimension, DF, of the fractal curves and third-order terms

in the equation of motion of a complex speed field. It results that, in a fractal

fluid, the convection, dissipation, and dispersion are reciprocally compensat-

ing at any scale (differentiable or non-differentiable), whereas a generalized

Schrödinger equation is obtained for an irrotational movement of the frac-

tal fluid. The absence of the dispersion implies a generalized Navier–Stokes

type equation and the usual Schrödinger equation results for the irrotational

movement in DF = 2 of the fractal fluid. The absence of dissipation implies a

generalized Korteweg–de Vries type equation. In such conjecture, the duality

is analyzed through a hydrodynamic formulation. At the differentiable scale,

the duality is achieved by the flowing regimes of the fractal fluid, while at the

non-differentiable scale, a fractal potential controls, through the coherence,

the duality.

PACS numbers: 05.45.Df, 47.53.+n, 03.65.–w

1. Introduction

The theoretical description of microphysical systems is generally based on
Schrödinger’s wave mechanics, Heisenberg’s matrix mechanics, or on Feynman’s
path-integral mechanics. Another approach is the hydrodynamic formulation of

∗corresponding author; e-mail: m.agop@yahoo.com; corresponding address: Stradela
Florilor No.2, 700514, Iasi, Romania

(1571)



1572 M. Agop et al.

quantum mechanics. The first hydrodynamic model of quantum mechanics was
given in [1]. This approach has been developed and extended to non-relativistic
spinning particles described by the Pauli equation [2–8]. A hydrodynamic model
of relativistic quantum mechanics of the Dirac particle was given in [9]. The hy-
drodynamic model of the Weyl equation has been treated by BiaÃlynicki-Birula
[10, 11]. This approach is similar to that given in [9] for the non-relativistic Pauli
equation and has some characteristics: (i) the hydrodynamic variables comprise
one scalar field — the density — and two vector fields — the velocity and momen-
tum; (ii) the reduction in the number of variables to four requires a quantization
condition — the same as in the non-relativistic case — that relates the curl of the
momentum field to an axial vector built from the velocity field. The advantage of
all hydrodynamic models of the quantum mechanics is that they [10, 11] “enable
us to visualize quantum mechanical processes in terms of the familiar variables
of classical hydrodynamics. Since the number of hydrodynamic variables always
exceeds the number of variables needed to describe the wave function, it is nec-
essary to impose an auxiliary condition on the hydrodynamic variables”, i.e. a
quantization condition.

On the other hand, the idea that the quantum space-time of microphysics is
fractal, rather than flat and Minkowskian as assumed up to now, was suggested
in [12, 13]. This proposal was itself based on earlier results [14–17], obtained
at first by Feynman (see in particular [18] and references therein), concerning the
geometrical structure of quantum paths. These studies have shown that the typical
trajectories of quantum mechanical particles are continuous but non-differentiable,
and can be characterized by a fractal dimension which jumps from DF = 1 at large
length-scales to DF = 2 at small length-scales, the transition occurring about the
de Broglie scale (see Refs. [19, 20]).

Now such a fractal dimension DF = 2 plays a particular role in physics. It
is well known that this is the fractal dimension of Brownian motion [21], i.e. from
the mathematical viewpoint, of a Markov–Wiener process. This remark leads us to
recall a related attempt at understanding the quantum behavior, namely, Nelson’s
stochastic quantum mechanics [22, 23]. In this approach, it is assumed that any
particle is subjected to an underlying Brownian motion of unknown origin, which
is described by two (forward and backward) Wiener processes: when combined
together, they yield the complex nature of the wave function and they transform
Newton’s equation of dynamics into the Schrödinger equation.

This is precisely one of the aims of the fractal space-time theory, and par-
ticularly of the scale relativity theory (SRT), to relate the fractal and stochastic
approaches [12, 19, 20, 24]: the hypothesis that the space-time is non-differentiable
and fractal implies that there is an infinity of geodesics between any couple of
points [19] and provides us with a fundamental and universal origin for the double
Wiener process of Nelson [20]. SRT is a new approach to understand quantum
mechanics, and moreover physical domains involving scale laws, such as chaotic
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systems. It is based on a generalization of Einstein’s principle of relativity to scale
transformations. Namely, one redefines space-time resolutions as characterizing
the state of scale of reference systems, in the same way as speed characterizes
their state of motion. Then one requires that the laws of physics apply what-
ever the state of the reference system, of motion (principle of motion-relativity)
and of scale (principle of SRT). The principle of SRT is mathematically achieved
by the principle of scale-covariance, requiring that the equations of physics keep
their simplest form under transformations of resolution. In such conjecture, it was
demonstrated that, in the fractal dimension DF = 2, the geodesics of the space-
time are given by a Schrödinger type equation [20–24]. Moreover, a hydrodynamic
model was developed [25].

Recently, using the hydrodynamic model of the Weyl–Dirac theory in the
non-relativistic and relativistic approach, some connections with fractal space-time
through SRT are given [26, 27]. According to these papers, a non-differentiable
continuum is necessarily fractal and the trajectories in such a space (or space-
-time) own (at least) the following properties: (i) the test particle can follow an
infinity of potential trajectories: this leads one to use a fluid (fractal fluid)-like
description; (ii) the geometry of each trajectory is fractal (of dimension 1 as in
[26] or of dimension 2 as in [27]). Each elementary displacement is then described
in terms of the sum, dX = dx + dξ, of a mean classical displacement dx = vdt

and of a fractal fluctuation dξ, whose behavior satisfies the principle of SRT (in
its simplest Galilean version). It is such that 〈dξ〉 = 0 and 〈dξ2〉 = (~/m)dt where
~/2m defines the fractal/non-fractal transition, i.e. the transition from the explicit
scale dependence to scale independence, ~ is the Planck reduced constant and m is
the rest-mass of test particle. The existence of this fluctuation implies introducing
new terms (first order terms as in [26] or second order terms as in [27]) in the
differential equation of motion; (iii) time reversibility is broken at the infinitesimal
level: this can be described in terms of a two-valuedness of the velocity vector (we
denote by v+ the “forward” speed and by v− the “backward” speed) for which we
use a complex representation, V = (v++v−)/2−i(v+−v−)/2. These three effects
were combined to construct the ”fractal” time derivative operators, Ô = ∂t +V ·∇
as in [26] or Ô(2) = ∂t +V ·∇− i(~/2m)∇ as in [27] and then to write the Newton
equations in their covariant form, Ô(1, 2)V = 0. From here, for the irrotational
movement of the quantum fluid, by separating the real and imaginary parts of the
complex velocity field V , the hydrodynamic model resulted.

More recently, Nottale et al. [28–31] analyzed both the physical background
of the scale relativity theory in connection with quantum mechanics and also the
mathematical formalism using the papers of Cresson [32, 33]. In these conditions,
Newton’s equation was integrated in terms of a Schrödinger equation. Thus, this
equation is both classical and quantum [30].

However, we note that all the treatments of Nottale are limited to the motion
on fractal curves of fractal dimension DF = 2 and second order term in the equation
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of motion of a complex speed field.
In the present paper, assuming that the microparticle movement takes place

on fractal curves (continuous but non-differentiable) of arbitrary fractal dimen-
sion DF, the wave–particle duality is studied in the third-order approximation of
the equation of motion, i.e. in an extended Nottale model of SRT. The paper is
structured as follows: in Sect. 2 the mathematical model is developed and cor-
respondences with known results are given. In Sect. 3 the hydrodynamic model
of SRT is built by assuming that, in the fractal fluid movement, the dissipation
can be neglected in comparison with the dispersion and convection. In the dif-
ferentiable case, various flowing regimes of the fractal fluid were evidenced as
corresponding with the dominance of one of the characters (wave or particle). In
the non-differentiable case given in Sect. 4, the wave or the particle character
was correlated with the self-structuring of the fractal fluid by means of a fractal
potential of the Bohm type.

2. Mathematical model

Let us suppose that the motion of microparticles takes place on fractal (con-
tinuous but non-differentiable) curves of fractal dimension DF. Such hypothesis
is in agreement with de Broglie’s theory [1–7, 13, 14]: the chaotic effect of the
associated wave packet of the particle on the particle itself has as result a motion
on a fractal curve. A manifold compatible with such motions will be called fractal
space-time. The fractal nature of space-time implies, through non-differentiability,
the breaking of differential time reflection invariance [20]. In such a context, the
usual definitions of the derivative of a given function with respect to time [20],

df

dt
= lim

∆t→0+

f(t + ∆t)− f(t)
∆t

= lim
∆t→0−

f(t)− f(t−∆t)
∆t

are equivalent in the differentiable case. One passes from one to the other by the
transformation ∆t → −∆t (time reflection invariance at the infinitesimal level).
In the non-differentiable case two functions (df+/dt) and (df−/dt) are defined as
explicit functions of t and of dt [20],

df+

dt
= lim

∆t→0+

f(t + ∆t, ∆t)− f(t,∆t)
∆t

,

df−
dt

= lim
δt→0−

f(t,∆t)− f(t−∆t,∆t)
∆t

.

The sign (+) corresponds to the forward process and (−) to the backward process.
Then, in the spaces coordinates dX, we can write (for details see [12, 19,

20, 24])

dX± = dx± + dξ± = v±dt + dξ± (1a,b)
with v± the forward and backward mean speeds,
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v+ =
dx+

dt
= lim

∆t→0+

〈
X(t + ∆t)−X(t)

∆t

〉
, (2a)

v− =
dx−
dt

= lim
∆t→0−

〈
X(t)−X(t−∆t)

∆t

〉
(2b)

and dξ± a measure of non-differentiability (a fluctuation induced by the fractal
properties of trajectory) with the average

〈dξ±〉 = 0. (3)
While the speed concept is classically a single concept, if space-time is

non-differentiable, we must introduce two speeds (v+ and v−) instead of one.
This “two-valuedness” of the speed vector is a new, specific consequence of non-
-differentiability that has no standard counterpart (in the sense of differential
physics).

However, we cannot favor v+ rather than v−. The only solution is to consider
both the forward (dt > 0) and backward (dt < 0) processes together. Then, we
can use the complex speed [20, 24]:

V =
v+ + v−

2
− i

v+ − v−
2

=
dx+ + dx−

2dt
− i

dx+ − dx−
2dt

. (4)

If (v+ + v−)/2 may be considered as differentiable (classical) speed, then the
difference (v+ − v−)/2 is the non-differentiable speed.

Using the notations dx± = d±x, Eq. (4) becomes

V =
(

d+ + d−
2dt

− i
d+ − d−

2dt

)
x. (5)

This enables us to define the operator
δ

dt
=

d+ + d−
2dt

− i
d+ − d−

2dt
. (6)

Let us now assume that the curve describing the movement (continuous but
non-differentiable) is immersed in a 3-dimensional space, and that X of compo-
nents Xi (i = 1, 2, 3) is the position vector of a point on the curve. Let us also
consider a function f(X, t) and the following Taylor series expansion up to the
third order

df = f(Xi + dXi, t + dt)− f(Xi,dt) =
(

∂

∂Xi
dXi +

∂

∂t
dt

)
f(Xi, t)

+
1
2

(
∂

∂Xi
dXi +

∂

∂t
dt

)2

f(Xi, t) +
1
3!
·
(

∂

∂Xi
dXi +

∂

∂t
dt

)3

f(Xi, t). (7)

From here, the forward and backward average values of this relation, using
notations dXi

± = d±Xi, take the form

〈d±f〉 =
〈

∂f

∂t
dt

〉
+ 〈∇f · d±X〉+

1
2

〈
∂2f

∂t2
(dt)2

〉
+

〈
∂2f

∂Xi∂t
d±Xidt

〉

+
1
2

〈
∂2f

∂Xi∂Xj
d±Xid±Xj

〉
+

1
6

〈
∂3f

∂Xi∂Xj∂Xk
d±Xid±Xjd±Xk

〉
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+
〈

∂3f

∂Xi∂Xj∂t
d±Xid±Xjd±t

〉
+

1
2

〈
∂3f

∂Xi∂t2
d±Xi(dt)2

〉

+
1
6

〈
∂3f

∂t3
(dt)3

〉
. (8)

We make the following stipulations: the mean values of the function f and
its derivates coincide with themselves, and the differentials d±Xi and dt are in-
dependent, therefore the averages of their products coincide with the product of
average. Thus Eq. (8) becomes

d±f =
∂f

∂t
dt +∇f〈d±X〉+

1
2

∂2f

∂t2
〈(dt)2〉+

∂2f

∂Xi∂t
〈d±Xidt〉

+
1
2

∂2f

∂Xi∂Xj
〈d±Xid±Xj〉+

1
6

∂3f

∂t3
〈(dt)3〉

+
1
2

∂3f

∂Xi∂Xi∂t
〈d±Xid±Xj〉〈dt〉+

1
2

∂3f

∂Xi∂t2
〈d±Xi〉〈(dt)2〉

+
1
6

∂3f

∂Xi∂Xj∂Xk
〈d±Xid±Xjd±Xk〉 (9)

or more, using Eqs. (1a,b) with the property (3),

d±f =
∂f

∂t
dt +∇fd±x +

1
2

∂2f

∂t2
(dt)2 +

∂2f

∂Xi∂t
d±xidt

+
1
2

∂2f

∂Xi∂Xj

(
d±xid±xj + 〈dξi

±dξj
±〉

)
+

1
6

∂3f

∂t3
(dt)3

+
1
2

∂3f

∂Xi∂Xj∂t

(
d±xid±xj + 〈dξi

±dξj
±〉

)
dt +

1
2

∂3f

∂Xi∂t2
d±xi(dt)2

+
1
6

∂3f

∂Xi∂Xj∂Xk

(
d±xid±xjd±xk + 〈dξi

±dξj
±dξk

±〉
)

. (10)

Since dξi
± describes the fractal properties of the fractal curve which has the

fractal dimension DF (for details see [15, 20, 21]), it is natural to impose (dξi
±)DF

to be proportional to time parameter dt, i.e.

(dξi
±)DF =

√
2Ddt (11)

with D — a proportionality coefficient.
Even the average value of the fractal coordinate, dξi

±, is null (see (3)) for
the high order of the fractal coordinate average the situation can be different.
First, let us focus now on the mean 〈dξi

±dξj
±〉. If i 6= j this average is zero due to

the independence of dξi and dξj . Therefore, using (11) we can write
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〈dξi
±dξj

±〉 = ±δij2D(dt)2/DF−1dt (12a)
with

δij =

{
1, if i = j,

0, if i 6= j,

and we had considered that{
〈dξi

+dξj
+〉 > 0 and dt > 0,

〈dξi
−dξj

−〉 > 0 and dt < 0.

Then, let us consider the mean 〈dξi
±dξj

±dξk
±〉. If i 6= j 6= k this average is

zero due to the independence of dξi on dξj and dξk. Now, using Eq. (11), we can
write

〈dξi
±dξj

±dξk
±〉 = δijk(2D)3/2(dt)3/DF−1dt (12b)

with

δijk =

{
1, if i = j = k,

0, if i 6= j 6= k,

and we considered that{
〈dξi

+dξj
+dξk

+〉 > 0 and dt > 0,

〈dξi
−dξj

−dξk
−〉 > 0 and dt < 0.

Then Eq. (10) may be written under the form

d±f =
∂f

∂t
dt +∇fd±x +

1
2

∂2f

∂t2
(dt)2 +

∂2f

∂Xi∂t
d±xidt

+
1
2

∂2f

∂Xi∂Xj
d±xid±xj ± ∂2f

∂Xi∂Xj
δijD(dt)2/DF−1

+
1
6

∂3f

∂t3
(dt)3 +

1
2

∂3f

∂Xi∂Xj∂t
d±xid±xjdt +

1
2

∂3f

∂Xi∂t2
d±xi(dt)2

+
1
6

∂3f

∂Xi∂Xj∂Xk
d±xid±xjd±xk

+
∂3f

∂Xi∂Xj∂Xk
δijk

√
2

3
(dt)3/DF−1dt. (13)

If we divide by dt and neglect the terms which contain differential factors
(for details on the method see [19, 20, 24]), Eq. (13) is reduced to

d±f

dt
=

∂f

∂t
+ v±∇f ±D(dt)2/DF−1∆f +

√
2

3
D3/2(dt)3/DF−1∇3f (14)

with
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∇3f =
∂3f

(∂X1)3
+

∂3f

(∂X2)3
+

∂3f

(∂X3)3
.

This relation also allows us to give the definition of the operator

d±
dt

=
∂

∂t
+ v∇±D(dt)2/DF−1∆ +

√
2

3
D3/2(dt)3/DF−1∇3. (15)

Let us calculate, under the circumstances (δf/dt). Taking into account
Eqs. (15) and Eq. (6), we obtain

δf

dt
=

1
2

[
d+f

dt
+

d−f

dt
− i

(
d+f

dt
− d−f

dt

)]

=
1
2

(
∂f

∂t
+ v+∇f + D(dt)2/DF−1∆f +

√
2

3
D3/2(dt)3/DF−1∇3f

)

+
1
2

(
∂f

∂t
+ v−∇f −D(dt)2/DF−1∆f +

√
2

3
D3/2(dt)3/DF−1∇3f

)

− i
2

(
∂f

∂t
+ v+∇f + D(dt)2/DF−1∆f +

√
2

3
D3/2(dt)3/DF−1∇3f

)

+
i
2

(
∂f

∂t
+ v+∇f −D(dt)2/DF−1∆f +

√
2

3
D3/2(dt)3/DF−1∇3f

)

=
∂f

∂t
+

(
v+ + v−

2
− i

v+ − v−
2

)
∇f − iD(dt)2/DF−1∆f

+
√

2
3

D3/2(dt)3/DF−1∇3f (16)

or using Eq. (5):

δf

dt
=

∂f

∂t
+ V · ∇f − iD(dt)2/DF−1∆f +

√
2

3
D3/2(dt)3/DF−1∇3f. (17)

This relation also allows us to give the definition of the fractal operator

δ

dt
=

∂

∂t
+ V · ∇ − iD(dt)2/DF−1∆ +

√
2

3
D3/2(dt)3/DF−1∇3. (18)

We now apply the principle of scale covariance, and postulate that the pas-
sage from classical (differentiable) mechanics to the “fractal” mechanics which is
considered here can be implemented by replacing the standard time derivative
d/dt by the complex operator δ/dt (this results in a generalization of the principle
of scale covariance given by Nottale in [19, 20, 24]). As a consequence, we are
now able to write the equation of geodesics (a generalization of the first Newton
principle) in a fractal space-time under its covariant form

δV

dt
=

∂V

∂t
+ V · ∇V − iD(dt)2/DF−1∆V
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+
√

2
3

D3/2(dt)3/DF−1∇3V = 0. (19)

This means that the global complex acceleration field, δV /dt, depends on the local
complex acceleration field, ∂tV , on the non-linearity (convective) term, V · ∇V ,
on the dissipative term, ∆V , and on the dispersive one, ∇3V . Moreover, the
behavior of a “fractal fluid” is of viscoelastic or of hysteretic type which means
that the fractal space-time has memory. Such a result is in agreement with the
opinion given in [34–36]: the fractal fluid can be described by the Kelvin–Voight
or Maxwell rheological model with the aid of complex quantities e.g. the complex
speed field, the complex acceleration field, etc.

Particularizing Eq. (19) interesting results arise. Thus, if in the fractal
space-time the dissipative and convective effects are dominant in comparison with
the dispersive ones, then the microparticle movement is described by a generalized
Navier–Stokes (GNS) type equation,

δV

dt
=

∂V

∂t
+ V · ∇V − iD(dt)2/DF−1∆V = 0 (19a)

with an imaginary viscosity coefficient, η = iD(dt)2/DF−1. If the dissipative effects
can be neglected by comparison with the convective and dispersive ones, then the
microparticle movement is described by a generalized Korteweg–de Vries (GKdV)
type equation,

∂V

∂t
+ V · ∇V +

√
2

3
D3/2(dt)3/DF−1∇3V = 0. (19b)

From Eq. (19) and through the operational relation V · ∇V = ∇(V 2/2) −
V × (∇× V ) we obtain the equation

δV

dt
=

∂V

∂t
+∇

(
V 2

2

)
− V × (∇× V )− iD(dt)2/DF−1∆V

+
√

2
3

D3/2(dt)3/DF−1∇3V = 0. (20)

If the motions of the fractal fluid are irrotational, i.e. Ω = ∇ × V = 0 we
can choose V of the form

V = ∇φ (21)
with φ — a complex speed potential. Then, Eq. (20) becomes

δV

dt
=

∂V

∂t
+∇

(
V 2

2

)
− iD(dt)2/DF−1∆V

+
√

2
3

D3/2(dt)3/DF−1∇3V = 0 (22)

and more, by substituting Eq. (21) in Eq. (22), we shall have by integration
∂φ

∂t
+

1
2
(∇φ)2 − iD(dt)2/DF−1∆φ
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+
√

2
3

D3/2(dt)3/DF−1∇3φ = F (t), (23)

with F (t) being a function of time only. We realize that Eq. (22) has been reduced
to a single scalar relation (23), i.e. a generalized Bernoulli (GB) type equation.

Let us choose the complex speed potential in the form

φ = −2iD(dt)2/DF−1 ln ψ. (24)
Then, ψ by means of Eq. (23) satisfies a generalized Schrödinger (GS) type equa-
tion

D2(dt)4/DF−2∆ψ + iD(dt)2/DF−1∂tψ

+i
√

2
3

D5/2(dt)5/DF−2(∇3 ln ψ)ψ = F (t). (25)

In such context, if in the fractal space-time the dissipative and convective effects
dominate the dispersive ones, with the restriction F (t) = 0, Eq. (25) can be re-
duced to a Schrödinger type equation in the fractal dimension DF,

D2(dt)4/DF−2∆ψ + iD(dt)2/DF−1∂tψ = 0. (26)
For D = ~/2m and DF = 2 (e.g. the Peano type curve which completely covers
a two-dimensional surface — see Nottale’s approach of SRT [20]), Eq. (26) is
reduced to standard Schrödinger equation.

Since usually the wave–particle duality is analyzed in the standard model
of quantum mechanics (which from our perspective involves Navier–Stokes type
equation — see Eq. (19a)), in the followings this aspect will be discussed from the
perspective of Eq. (19b).

3. Wave–particle duality at differentiable scale

Let us consider the relation (4) in the form

V = v + iu. (27)
According to our previous paragraph, v will correspond to the classical speed given
by the differential part of V , and u will correspond to the fractal speed given by
the non-differential part of V . By replacing (27) in Eq. (19b) and separating the
real part from the imaginary one, we obtain the following system:

∂v

∂t
+∇

(
v2

2
− u2

2

)
+
√

2
3

D3/2(dt)3/DF−1∇3v = 0, (28a)

∂u

∂t
+∇(v · u) +

√
2

3
D3/2(dt)3/DF−1∇3u = 0. (28b)

Substituting in (24) and then in (21), ψ =
√

ρ exp(iS), with
√

ρ the ampli-
tude and S the phase, the components of the complex speed V are

v = 2D(dt)2/DF−1∇S, u = −D(dt)2/DF−1∇ ln ρ. (29a,b)
Then, Eq. (28a) corresponds to the momentum conservation law
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m

[
∂tv + v · ∇v +

√
2

3
D3/2(dt)3/DF−1∇3v

]
= −∇(Q) (29c)

with Q = −mu2/2 and Eq. (28b), up to an arbitrary phase factor which may be
set to zero by a suitable choice of the phase of ψ, to the probability conservation
law

∂tρ +∇ · (ρv) = ρ∆ · v − ρ

√
2

3
D3/2(dt)3/DF−1∇3 ln ρ. (29d)

Moreover, the compatibility between the scale relativity hydrodynamic model and
wave mechanics implies the quantization condition∮

mv · dr = 2D(dt)2/DF−1

∮
∇S · dr = 4πnD(dt)2/DF−1, n = 0, 1, 2 . . .

Particularly, for D = 2m~ and DF = 2, the previous relation takes the standard
form ∮

mvdr = nh.

In the differentiable case, u = 0 or ρ = const, Eqs. (29c,d), in one-
-dimensional case, takes the standard form of the KdV equation [37]:

∂v

∂t
+ v

∂v

∂X
+
√

2
3

D3/2(dt)3/DF−1 ∂3v

∂X3
= 0. (30)

Using the dimensionless parameters, φ̄ = v/v0, τ = ω0t, ξ = k0X, and the nor-
malizing conditions (k0v0/2) =

√
2D3/2(dt)3/DF−1k3

0 = 3ω0, Eq. (30) becomes

∂τ φ̄ + 6φ̄∂ξφ̄ + ∂ξξξφ̄ = 0. (31)
Through the substitutions, w(θ) = φ̄(ξ, τ), θ = ξ − uτ , where (ω0, k0, v0) are the
specific parameters of speed field, Eq. (31), by double integration, becomes

1
2
w′2 = F (w) = −

(
w3 − u

2
w2 − gw − h

)
(32)

with g, h two integration constants. If F (w) has real roots, they are of the form

e1 = 2a
E(s)
K(s)

, e2 = 2a

[
E(s)
K(s)

− 1
]

, e3 = 2a

[
E(s)
K(s)

− 1
s2

]
(33a–c)

with

a =
e1 − e2

2
, s2 =

e1 − e2

e1 − e3
, K(s) =

∫ π/2

0

(1− s2 sin2 ϕ)−1/2dϕ,

E(s) =
∫ π/2

0

(1− s2 sin2 ϕ)1/2dϕ (34a–d)

and K(s), E(s) the complete elliptic integrals [38]. Then, the solution of Eq. (31)
has the expression

φ̄(ξ, τ) = 2a

(
E(s)
K(s)

− 1
)

+2a · cn2

{√
a

s

[
ξ − 2a

(
3E(s)
K(s)

− 1 + s2

s2

)
τ + ξ0

]
; s

}
, (35)



1582 M. Agop et al.

where cn is the Jacobi elliptic function of s modulus [38] and ξ0 constant of in-
tegration. As a result, the wave–particle duality is achieved by one-dimensional
cnoidal oscillation modes of the speed field — see Fig. 1. This process is charac-
terized through the normalized wave length,

λ =
2sK(s)√

a
(36)

— see Fig. 2, and the normalized phase speed

u = 4a

[
3

E(s)
K(s)

− 1 + s2

s2

]
(37)

— see Fig. 3. Then, the following results:

Fig. 1. One-dimensional cnoidal oscillation modes.

Fig. 2. The dependence of the normalized wave length λ with s.

i) through the D coefficient, the parameter s becomes a measure of the wave–
particle coupling. Thus, for s → 0, the normalized phase speed |u| is high and
the normalized wave length λ is small — see Figs. 2 and 3. On the contrary, for
s → 1, |u| is small and λ is high — see Figs. 2 and 3;
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Fig. 3. The dependence of the normalized phase speed u with s.

Fig. 4. The dependence A = A(s).

ii) the one-dimensional cnoidal speed oscillation modes contain as subse-
quences: (ii1) for s = 0 the one-dimensional speed harmonic waves and (ii2) for
s → 0 the one-dimensional speed waves packet. These two subsequences describe
the wave–particle duality in a non-autonomous regime and in this regime the wave
character is dominant. (ii3) For s = 1, the solution (35), with the substitutions
φ̄0 = e3 and k2 = (e1 − e3)/2, becomes the one-dimensional speed soliton

φ̄(ξ, τ) = φ̄0 + 2k2sech2
[
k(ξ − (4k2 + 3φ̄0)τ + ξ0)

]
(38)

of amplitude 2k2, width k−1 and phase velocity u = 4k2 = 3φ̄0, while (ii4) for
s → 1 the one-dimensional speed solitons packet results. These last two subse-
quences describe the wave–particle duality in a quasi-autonomous regime and in
this regime the particle character is dominant;

iii) by eliminating the parameter a from relations (36) and (37), one obtains

uλ2 = A(s), A(s) = 16
[
3s2E(s)K(s)− (1 + s2)K2(s)

]
, (39a,b)

where the quantity A(s) is numerically evaluated. For s = 0 ÷ 0.7, A(s) ≈ const
— see Fig. 4, and Eq. (39a) takes the form

uλ2 = const (40)
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and the value 0.7 is separating the wave character by the particle one.
In conclusion, the wave–particle duality is controlled through the flowing

regimes of the fractal fluid, and the separation between them is given by the 0.7
value of the coupling parameter s.

4. Wave–particle duality at non-differentiable scale

In Eq. (32) the passage from the differentiable scale to the non-differential
one is achieved by the substitutions w = (u/4)f2, iη = (u/4)1/2θ. Assuming the
restriction, h = 0, Eq. (32) becomes a Ginzburg–Landau type equation [37]:

∂ηηf = f3 − f. (41)
It results:

i) The η coordinate has dynamic significations, e.g. complex time [39–41],
and the variable f acquires probabilistic significance. The space-time becomes a
fractal one (for details see [19, 20, 24]) and the fluid acquires fractal properties;

ii) According to [42] we can build a field theory with spontaneous symmetry
breaking. Indeed, Eq. (41) is obtained from the variational principle δ

∫
LdV = 0

applied to the Lagrangian density

L =
1
2
(∂ηf)2 − V (f) (42)

with the potential

V (f) =
f4

4
− f2

2
(43)

and dV the elementary volume.
Equation (41) has the solutions f1 = 0, f2,3 = ±1. By calculating the

second derivative with respect to f of the potential entering (43) and substituting
the extreme values into the result of this differentiation, we find Vff (0) = −1,
Vff (±1) = 2 > 0, i.e. the solution f = ±1 is associated with the minimum energy.
The physical states associated with the minimum of energy define the vacuum
states. Hence, the model under consideration has double degenerated vacuum
states (for details see [42]).

From (42) there result both the energy

ε(f) =
∫ ∞

−∞
dη

[
1
2
(∂ηf)2 + V (f)

]
(44)

and the energy relative to the vacuum

ε(f)− ε(fν) =
∫ ∞

−∞
dη

[
1
2
(∂ηf)2 +

1
4
(f2 − 1)2

]
. (45)

Because all the terms in (45) are positive and in view of the infinite limits
of integration, the finiteness of the energy implies that at η → ±∞:

∂ηf = 0, (f2 − 1)2/4 = 0. (46)
From this, it follows that for η → ±∞ the function f(η) tends to its vacuum values
fν → ±1.
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To find the explicit form of the solution of (41), we multiply it by ∂ηf and
integrate over η. It results

1
2
(∂ηf)2 = −f2

2
+

f4

4
+

1
2
f0, (47)

where f0 is an integration constant. From this we have

η − η0 = τ

∫ f̄

0

df√
f4

2 − f2 + f0

, (48)

where η0 is another constant of integration. For an arbitrary f0, to this general
solution there corresponds an infinite value of the energy ε(f). To obtain the
solution with finite energy, we make use of the boundary conditions fν = ±1.
From (47) it results that f0 = 1/2. Replacing this value of f0 into (48), the
solution fk(η) of the field Eq. (47) with a finite energy is

fk(η) = f(η − η0) = tanh
[

1√
2
(η − η0)

]
. (49)

This is called the fractal kink solution (a kink solution in a fractal space-time).
Combining (45) with the expression fν = 1 and the expression for fk, we

obtain the energy of the fractal kink relative to the vacuum

ε(fk)− ε(fν) =
2
√

3
3

. (50)

Therefore, the fractal kink solution was obtained by a spontaneous symmetry
breaking.

A topological method [42] can be further applied because the admissible
number of fractal kinks is determined by the topological properties of the sym-
metry group of Eq. (41). In this context, the following problems will be solved:
(i) the number of admissible fractal kink solutions determined by the topological
properties of Eq. (41); (ii) the topological charge.

The fractal kink solution can be considered as mapping of a spatial zero-
-sphere S0, taken at infinity onto the vacuum manifold model of (41). The ho-
motopy group for this model is Π0(Z0) = Z2, i.e. the model gives rise to two
solutions: a constant solution fν and the fractal kink solution.

The associated topological charge is

Q =
1
2

∫ ∞

−∞
j(η)dη =

1
2

∫ ∞

−∞

df

dη
dη =

1
2
[f(+∞)− f(−∞)]. (51)

The vacuum solution (absence of spatial gradients) and the fractal kink solution
can be characterized by attributing the Q = 0 and Q = 1, respectively (the result
is obtained by an adequate normalization of f);

iii) The fractal kink spontaneously breaks the “vacuum symmetry” of the
fractal fluid by tunneling and generates coherent structures. This mechanism is
similar to the one of superconductivity [43];

iv) By an analogy with the Bohm potential [44], the normalized fractal po-
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tential [27] describes the “vacuum states” of the fractal fluid. Then, it has a very
simple expression which is directly proportional with the states density of the frac-
tal fluid, i.e.

Q = − 1
f

d2f

dη2
= 1− f2. (52)

When the states density, f2, becomes zero, the normalized fractal potential takes
a finite value, Q = 1. The fractal fluid is normal and there are no coherent struc-
tures in it. When f2 becomes 1, the normalized fractal potential is equal to zero,
i.e. the entire quantity of energy of the fractal fluid is transferred to its coher-
ent structures. Then the fractal fluid becomes coherent through self-structuring.
Therefore, one can assume that the energy from the fractal fluid can be stocked
by transforming all the environment’s entities into coherent structures and then
“freezing” them. The fractal fluid acts as an energy accumulator through the
normalized fractal potential;

v) substituting (49) in (52) the fractal potential becomes a fractal soliton (a
soliton in a fractal space-time)

Q = sech2

[
1√
2
(η − η0)

]
. (53)

Having in view the conclusion of the previous paragraph, the fractal potential
controls the wave–particle duality through the coherence of the fluid. Thus, if the
“fluid” is incoherent (non-quasi-autonomous flowing regime), the wave character
is dominant, while if the “fluid” is coherent (quasi-autonomous flowing regime)
the particle character is dominant.

5. Conclusions

The main conclusions of the present paper are the following:
i) Considering that the microparticle movements take place on fractal curves

of fractal dimension DF, the wave–particle duality is studied in an extension of
scale relativity theory;

ii) An equation of motion is deduced for the complex speed field, where the
local complex acceleration, convection, dissipation and dispersion are reciprocally
compensating;

iii) The absence of the dispersion implies a generalized Navier–Stokes type
equation, and from here, for the irrotational movement and fractal dimension
DF = 2, the usual Schrödinger equation resulted. This is the Nottale standard
model of scale relativity;

iv) The absence of dissipation implies a generalized Korteweg–de Vries type
equation. In such conjecture, the wave–particle duality is analyzed. It resulted:
(iv1) through the SR hydrodynamic model in the differentiable case, the wave–
particle duality is achieved by one-dimensional cnoidal oscillation modes of the
speed field; (iv2) for different degrees of the wave–particle coupling, the one-
-dimensional cnoidal speed oscillation modes contain the one-dimensional speed
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harmonic waves, the one-dimensional speed waves packet, the one-dimensional
speed solitons packet and the one-dimensional speed soliton. The first two subse-
quences describe the non-autonomous regime of the wave–particle coupling, i.e. a
situation in which the wave character is dominant, while the last ones describe the
quasi-autonomous regime of the wave–particle coupling, i.e. a situation in which
the particle character is dominant; (iv3) in the non-autonomous regime, a relation
between the normalized wave length and the normalized phase speed, i.e. a dis-
persion type relation, is obtained; (iv4) these two regimes are separated by “0.7
structure”; (iv5) in the non-differentiable case we build a field theory with spon-
taneous symmetry breaking. The fractal kink spontaneously breaks the “vacuum
symmetry” of the fractal fluid by tunneling and generates coherent structures.
Moreover, the fractal fluid acts as an energy accumulator through the fractal po-
tential (fractal soliton). Then, the wave–particle duality is controlled through the
fractal potential: if the fluid is incoherent, the wave character is dominant, while
if the fluid is coherent the particle character is dominant.
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[28] L. Nottale, M.N. Célérier, T. Lehner, J. Math. Phys. 47, 032303 (2006).
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