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The paper deals with the ways of finding an electrical conductivity ten-

sor of a plane and anisotropically conductive sample. Application of the

Van der Pauw method to investigate the conductivity of anisotropically con-

ductive media makes the basis of research. Several models of distribution

of the electric field potential are presented, their merits and demerits are

discussed, and the necessary physical measurements are indicated. On the

basis of these models, the respective calculation expressions of the specific

conductivity tensor are derived and algorithms for their realization and error

calculation are developed.

PACS numbers: 06.20.Dk, 02.60.Cb

1. Introduction

The methods for determining electrical conductivity of thin (metal) films
are topical in practice, whereas many materials of interest are of a crystalline
structure and therefore are likely to be anisotropic [1–4]. Van der Pauw (1958)
[5] made an important contribution to the development of these methods. With
the use of his method we can calculate electrical conductivity of an isotropically
conductive sample with 4 point contacts of uniform thickness and any geometrical
form. To realize this method, it suffices to measure the difference of two potentials
and current intensity. Then, having solved a transcendental equation, not very
complicated in the mathematical sense, we can find the specific conductivity of
the substance of sample. Later on, in 1972, the paper of Price [6] appeared in
which it is proved that, under the anisotropic conductivity, the solution to the Van
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der Pauw equation is coincident with the root of the determinant of conductivity
tensor.

This work encompasses a more extensive problem: to establish all the sum-
mands of the specific conductivity tensor of an anisotropically conductive slab. It
has been proved in the work that, if it is a rectangular-shaped sample with 4 point
contacts infixed at its angles and with the fifth one in one of the sides, then, after
making 3 measurements, analogous to the Van der Pauw method, we can build a
system of equations that is solved uniquely, and its solution is the summands of the
conductivity tensor. In addition, a numerical algorithm has been constructed for
solving this problem, and errors of the method have been analyzed, the contacts
of sample being of finite length.

2. The method for calculating the summands
of the conductivity tensor

In this section, we define physical measurements, that are sufficient for es-
tablishing the specific conductivity tensor σ, and indicate its calculating method.

The experiments are done using a rectangular shaped sample (a×b) of equal
height d with five point contacts: 4 of them (1–4) are located at angular points,
and the fifth one in one of its sides (Fig. 1).

Fig. 1. Contact arrangement in sample and the distances a, a′, b among them.

Three experiments were performed:
1. After inducing voltage between contacts 1 and 2, we measure the flowing

current intensity I12 and appearing differences of potentials ∆ϕ34 = ϕ4 − ϕ3

(Fig. 2a);
2. After inducing voltage between contacts 1 and 2, we measure the flowing

current intensity I12 and appearing differences of potentials ∆ϕ53 = ϕ3 − ϕ5

(Fig. 2b);
3. After inducing voltage between contacts 1 and 4, we measure the flowing

current intensity I14 and the appearing difference of potentials ∆ϕ32 = ϕ2 − ϕ3

(Fig. 2c).
We show how to calculate the summands of the specific conductivity tensor

σ in quest (see Sect. 3.1), based on the results of experiments done.
At the first stage, we solve the Van der Pauw equation [5]:

exp
(
−πsd

∆ϕ34

I12

)
+ exp

(
−πsd

∆ϕ32

I14

)
= 1, (1)
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Fig. 2. Measurements carried out in the experiments.

and find an unknown s which is coincident [6], in the physical sense, with the root
of the determinant s =

√
detσ.

This stage is analogous to the Van der Pauw method, however, in this case,
we calculate not the specific conductivity of anisotropic substance, but a determi-
nant of the specific conductivity tensor.

At the next stage, applying the formulae

k = exp
(
−πds

∆ϕ34

I12

)
, (2)

t = exp
(
−πds

∆ϕ53

I12

)
, (3)

we establish auxiliary parameters 0 < k < 1 and 0 < t < 1. Having calculated
them, we form and solve an equation of one unknown α:

∫ t

0
fα,kdτ

Aα,k
=

a′

a
, (4)

here fα,k = τα−1(1− τ)−α(1− kτ)α−1, Aα,k =
∫ 1

0
fα,kdτ , and a, a′ are distances

between contacts 1–4 and 2–5.
The solution α (0 < α < 1) of Eq. (4) and the parameters k, t and

√
detσ

are sufficient to determine the tensor summands σ11, σ12, σ22.
At the third, final, stage, the σ11, σ12, σ22 are calculated by the formulae

σ11 = λ
a

b

Aα,1−k

Aα,k
, σ12 = −λ cos(απ), σ22 = λ

b

a

Aα,k

Aα,1−k
, (5)

where λ =
√

detσ/ sin(απ).
In the following section, we will ground this method of tensor calculation,

and here we restrict ourselves only to the remarks on numerical realization of the
method. While considering the latter, we face the following problems of computa-
tional mathematics:

1. solution of Eq. (1) to calculate the tensor determinant;

2. formation and application of numerical procedures, to compute integrals∫ t

0
fα,kdτ ;

3. solution of Eq. (4) to calculate the parameters α.

The authors in [7] have constructed special numerical algorithms for solv-
ing all these problems, in the application of which only elementary functions are
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used. However, in order that every researcher could employ the method under
consideration, we describe it by applying the mathematical package Maple. This
is widespread package that enables us to solve various mathematical problems.
Its internal operators (int) allow for prompt highly accurate computations of the
integrals

∫ t

0
fα,kdτ (beginning with its 7th version of Maple, several hundreds of

integrals per second with an accuracy of 10−14). These integrals are indispensable
in solving Eq. (4). Moreover, it has been proved [8] that its left-hand side is a
monotone function of the unknown α. Therefore, it is convenient to solve it by the
bisection method because it converges unconditionally, and its error is ε ≈ 10−m/3

(m is the number of iterations). Therefore, having computed e.g. 60 integrals,
we define the value of the parameter α with an accuracy of 10−10. We can find
the other unknown detσ, defined by the Van de Pauw Eq. (1), directly using the
operator fsolve.

Let us note that the time of all the operations (1)–(5) necessary to realize
the method makes up about 1 second.

3. Foundation of the method

3.1. Reduction to an isotropic case

Distribution of the electric field potential ϕ(x, y) in a plain domain G, the
electrical conductivity of which is defined by the tensor

σ =

(
σ11 σ12

σ12 σ22

)
= const, σ11, σ22,detσ = σ11σ22 − (σ12)2 > 0 (6)

is expressed by a boundary problem




divj = 0, (x, y) ∈ G,

j = σgradϕ,

ϕ|κ = const,

(σgradϕ)n|Γ\κ = 0,

(7)

here Γ is the contour of domain G, κ is the part of the contour coincident with
the contacts κ1, κ2, . . . , and n is the contour normal (Fig. 3a).

Fig. 3. Domain transformation scheme: (a) initial domain; (b) transformed domain.
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After replacing variables in problem (7):

ξ = xσ22 − yσ12, η = y
√

detσ, (8)
we get a boundary problem for the function ϕ̂(ξ, η) = ϕ(x, y) in the respective
domain Ĝ (Fig. 3b) of the Laplace equation





divĵ ≡ ∆ϕ̂(ξ, η) = 0, (ξ, η) ∈ Ĝ,

ĵ = sgradϕ̂,

ϕ̂|κ̂ = const,
∂ϕ̂

∂n̂ξ,η

∣∣∣
Γ̂\κ̂

= 0,

(9)

where n̂ξη is the contour normal of domain Ĝ.
In the physical sense, Eq. (9) defines the potential distribution on isotropic

sample Ĝ, therefore it suffices to determine its conductivity s. To this end, we
prove the statement: if the numbers s =

√
detσ in problem (9), then problems (7)

and (9) are equivalent.

3.2. Mapping to a half-plane

Let the shape of an anisotropically conductive sample be a rectangle G =
{a× b} (Fig. 1), the sides of which are arbitrarily oriented with respect to tensor
principal directions. After transforming (8), we get that the mapping (ξ, η) of
domain G on the plane is a parallelogram with the side lengths L1 = aσ22, L2 =
b
√

σ11σ22, and the angle between them

απ = arccos
−σ12√
σ11σ22

. (10)

Besides, the integral

ξ + iη = µ

∫ z

0

fα,k(τ)dτ, (11)

here fα,k(τ) = τα−1(1− τ)−α(1−kτ)α−1, µ = aσ22

(∫ 1

0
fα,k(τ)dτ

)−1

conformally

maps the half-plane S: z = t + iϑ, ϑ ≥ 0 into the parallelogram so that the
mappings of points t = ±∞, 0, 1, 1/k are vertices 1, 2, 3, 4 of the parallelogram.

Now, basing on [5] and Fig. 4, we compute
∆ϕ43

I12
=

1
πds

ln
(

(p + q)(q + r)
q(p + q + r)

)∣∣∣∣
p=∞,q=1,r=1/k−1

=
−1
πds

ln k,

∆ϕ32

I14
=

1
πds

ln
(

(p + q)(q + r)
pr

)∣∣∣∣
p=∞,q=1,r=1/k−1

=
−1
πds

ln(1− k).

Hence k = exp
(
−πds∆ϕ43

I12

)
and 1 − k = exp

(
−πds∆ϕ32

I14

)
. Thus, equality (2)

is proved. By adding the latter equalities, we obtain the Van der Pauw Eq. (1).
Reasoning analogously, we can get the mapping of contact 5 on the real axis t

(Fig. 2b):
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Fig. 4. Contact images and distances p, q, r among them.

Fig. 5. Mapping of rectangular shape sample onto parallelogram.

Fig. 6. Contact images and distances p′, q′, r′ among them.

∆ϕ53

I12
=

1
πds

ln
(

(p′ + q′)(q′ + r′)
q′(p′ + q′ + r′)

)∣∣∣∣
p′=∞,q′=t,r′=1−t

=
−1
πds

ln t.

Hence equality (3) is derived directly.
Since the position of contact 5 in the rectangle side is known (its dis-

tance from contact 2 is equal to a′, Fig. 1), based on (8), (11), we have
µ

∫ t

0
fα,k(τ)dτ = a′σ22 and µ

∫ 1

0
fα,k(τ)dτ = aσ22. This substantiates relation

(4). It should be noted that the length of another parallelogram side L2 (Fig. 5)
can also be expressed by integral [7]:

L2 = a
√

σ11σ22 = µ

∫ 1/k

1

|fα,k|dτ = µ

∫ 1

0

fα,1−kdτ = µAα,1−k.

From this and Eq. (10), the system




−σ12√
σ11σ22

= cos(απ),√
σ11
σ22

= a
b

Aα,1−k

Aα,k
,

σ11σ22 − σ2
12 = detσ

is constructed which has a unique solution (5) in the domain σ11, σ22 > 0.

4. Simulation of experiments

The formulae for computing tensor summands presented in the third section
are exact only in case all the sample contacts are of zero length. Naturally, when
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doing experiments this condition will not be satisfied, and the tensor will be calcu-
lated only approximately. These errors will be estimated, if we build experiment
imitating formulae.

Let us assume that the lengths of all the (1–4) angular contacts are 2h, while
of the 5th one it is h (Fig. 7a). We shall find analytical expressions of the flowing
current intensities and contact potentials if we perform the experiments described
in the third section.

Fig. 7. Sample with finite contact length (a) and their images on real axis (b).

First let us consider the first experiment when the current I12 is flowing
through contacts 1–2. If the tensor is known, the mappings of points of the
rectangular sample contour are also known: (8) onto the parallelogram P and
(11) — into the half-plane S. After mapping we obtain the maps of contacts 1–5
on the real axis t of the half-plane S. The coordinates of their boundary points
are denoted as tij (Fig. 7b).

Let us construct the function of argument τ :

F =
(T3 − τ)(T4 − τ)(T5 − τ)√
−∏5

i=1(ti1 − τ)(ti2 − τ)

and choose the numbers T3, T4, T5 so that
∫ ti2

ti1

Fdτ = 0, Ti ∈ (ti1, ti2), i = 3, 4, 5. (12)

Then the integral

u + iv =
∫ t

t12

Fdτ (13)

conformally maps the half-plane S onto a polygon W (i.e., into a rectangle with
3 cuts, Fig. 8a). Since within the domain W the potential ϕ satisfies the Laplace
equation all the contacts 1–5 arranged on the straight lines parallel to the imagi-
nary axis v, the potential in them being constant, and at the remaining points of
contour W the derivative in the direction of the normal is equal to 0, the potential
in the domain W varies linearly. In order to find the expression of potential ϕ, let
us assume that voltage V is induced between contacts 1 and 2: let the potential
of contact 1 be ϕ = V , 2 — ϕ = 0. Then, in view of (13) we obtain
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Fig. 8. The scheme of the polygon W . Points tij and Ti, Pi denote image points 1–5

after mapping (3.2) (a) and (3.4) (b).

ϕ(u, v) = V (1− u/u0) = V

[
1−<

(∫ t

t12

Fdτ

)
/

∫ t21

t12

Fdτ

]
.

We denote here by < the real part of a complex number.
We compute the difference ∆ϕ34 = ϕ4 − ϕ3 of potentials induced between

contacts 3 and 4 by integrating over the real axis segment t32t41:

∆ϕ34 = V

∫ t41
t32

|F |dτ
∫ t21

t12
Fdτ

and the flowing current intensity I12 — over the real axis segment t21t22:

I12 = V d
√

detσ

∫ t22
t21

|F |dτ
∫ t21

t12
Fdτ

. (14)

Hence we get the imitation formula

∆ϕ34

I12
=

1
d
√

detσ

∫ t41
t32

|F |dτ
∫ t22

t21
|F |dτ

(15)

of the first experiment (Fig. 2a).
By means of similar transformations, we obtain imitation formulae

∆ϕ53

I12
=

1
d
√

detσ

∫ t31
t52

|F |dτ
∫ t22

t21
|F |dτ

, (16)

∆ϕ32

I14
=

1
d
√

detσ

∫ t51
t22

|F̂ |dτ +
∫ t31

t52
|F̂ |dτ

∫ t42
t41

|F̂ |dτ
(17)

of the second (Fig. 2b) and third (Fig. 2c) experiments. In the last formula

F̂ =
(P2 − τ)(P3 − τ)(P5 − τ)√
−∏5

i=1(ti1 − τ)(ti2 − τ)
,

numbers P3, P4, P5 satisfy the equalities
∫ ti2

ti1

F̂dτ = 0, Pi ∈ (ti1, ti2), i = 2, 3, 5, (18)

while the map of half-plane S, after mapping
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u + iv =
∫ t

t12

F̂dτ, (19)

is presented in Fig. 8b.
Let us note that, on the basis of integral expression (14) of the flowing current

intensity, conditions (12):
∫ ti2

ti1
Fdτ = 0, i = 3, 4, 5 show that the general amount

of the current flowing through the corresponding contacts 3, 4, 5 (i.e., through
those of them which are not coincident with the current contacts) is equal to 0.
Conditions (18) introduced above have the same sense.

5. Error estimation

Formulae (5) for calculating a tensor are derived in the second and third
sections under the assumption that all the lengths of sample contacts are zero
(h = 0), which is mathematical idealization of a real sample. Therefore, when
computing the tensor σ in this way, we shall find only its approximate value σ̄.
However, this is not the only source of errors of the method proposed: in the case of
isotropic conductivity, the value of errors is influenced by geometrical parameters
a and b of the sample, and in the anisotropic case, by the value of the tensor σ

summands in addition.
Thus, there arises an important problem for defining the error dependence on

the parameters mentioned. With a view to solve it, experiment imitation formulae
(15)–(17) have been derived in the fourth section. According to them, the exact
value of tensor σ being known, one can compute the quantities obtained during
the experiment. Then, applying formulae (5) of the method, one can establish an
approximate value of the tensor and, consequently, estimate the error.

We are doing that by defining a relative error

δ =
||σ̄ − σ||
||σ|| 100%, (20)

where ||σ|| =
√

σ2
11 + σ2

12 + σ2
22.

In order to briefly consider as many different cases as possible, let us note
that for any tensor (6), the relation

σ =

(
cos θ − sin θ

sin θ cos θ

) (
σ1 0

0 σ2

)(
cos θ sin θ

− sin θ cos θ

)
, θ ∈ [0, π] (21)

holds. It follows from (19) and (20) that the maximal value δM = max1≤θ≤π δ

of error δ with respect to θ depends only on a single number — the ratio σ1/σ2

between the principal summands. Figure 9 illustrates the distribution of this error
when doing experiments with a square-shaped sample (a = b = 1, a′ = 0.5), at
different values of contact lengths h (in the parentheses we see percentage coverage
of the sample contour by contacts κ = 9h

2(a+b)100%, see Fig. 7).
Thus, the error δM acquires the minimal value under isotropic conductivity

(if σ1 = σ2, then δM ≤ 0.1%), and it increases with an increase in contact lengths
as well as recession of the ratio σ1/σ2 from 1. For instance, if h = 0.05 (the
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Fig. 9. The dependences of error distributions on the length of contacts h and on the

ratio σ1/σ2.

contacts coverage κ = 11.25% of the sample contour) and 1/6 ≤ σ1/σ2 ≤ 6, then
the error does not exceed 1.1%.

6. Conclusions

1. The new method for calculating the specific electrical conductivity tensor
σ of a flat anisotropically conductive medium has been developed, based on the
fact that:

a) a linear plane transformation that canonizes an elliptic-type equation
changes the physical properties of the sample: the previous anisotropic conductiv-
ity becomes isotropic, the specific conductivity of which is coincident with

√
detσ;

b) if the lengths of sample contacts are short as compared with the sample
perimeter, then, by alternating the geometrical shape of the sample as well as
location of contacts, the ratios between potential differences and current intensities
are retained rather stable (Van der Pauw theorem [5]).

2. By applying the Schwartz–Christoffel transformation, we have proved
that, in the case of anisotropic conductivity, using a rectangular-shaped sample
with five contacts and having done three experiments, it is possible to uniquely
find the summands of the specific conductivity tensor. To solve this problem, a
system of equations has been constructed and the way of its numerical solution
indicated.

3. The volume of calculation is not so large: it takes up about 1 second,
employing the usual computational technique.

4. The problem of imitating all the experiments done has been solved. On its
basis, the errors of the method have been computed and graphs of their distribution
presented.

5. We have established that the errors essentially depend on the relative
contact lengths and the degree of anisotropy of the considered substance, i.e., on
the ratio σ1/σ2 of the principal summands of tensor σ. We have defined that in
case the sum of all the contact lengths makes up to 23% of the sample perimeter
and 1/6 ≤ σ1/σ2 ≤ 6, the relative tensor error δM does not exceed 3%, and if
1/2 ≤ σ1/σ2 ≤ 2 — δM ≤ 1% and if the medium is isotropic, then δM ≤ 0.1%.
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