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A modified adiabatic approximation, with the positron treated as a

light nucleus and its charge included only partially in the electronic Hamil-

tonian, was applied to compute the energies and properties of bound states

of lithium positride, positronic beryllium and positronic magnesium. The

electronic Schrödinger equation was solved with the configuration interac-

tion method. No bound state was obtained for lithium positride, while the

dissociation energies of positronic beryllium and positronic magnesium were

underestimated by 2.6 and 7 millihartrees, respectively. Consequences for

the applicability of the adiabatic approximation to describe positronic sys-

tems are discussed.

PACS numbers: 34.20.Cf, 31.50.Bc, 36.10.Dr

1. Introduction

Ten years ago a breakthrough took place in theoretical studies of positronic
atoms. Stability of positronic lithium — the first known case of positron bind-
ing by a neutral atom — has been demonstrated in two independent but quite
similar works [1, 2], with the same type of trial wave functions, namely explicitly
correlated Gaussian (ECG) functions, differing only in the strategies of optimiza-
tion of nonlinear parameters (stochastic versus deterministic) and sizes of basis
sets. Further calculations on various positronic atoms quickly followed (see [3]
for a review and [4–8] for more recent results). Besides of variational calculations
with ECG functions, diffusion quantum Monte Carlo simulations appeared to be
able to provide accurate energies for positronic systems [9–13]. Unfortunately,
the computational cost of both methods increases quickly with the number of ac-
tive electrons, limiting in practice their applicability to rather small atoms and
molecules.

The configuration interaction (CI) method, which is well established in com-
putational quantum chemistry, can be adapted to handle also positronic matter.
However, this method faces a different problem. The convergence of the expansion
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of the wave function in terms of configurations built from one-particle orbitals is
extremely slow, especially for the annihilation rate [14]. This means that orbitals
of very high angular momentum should be included in the basis set to provide
reasonable results. Of course, calculation of necessary integrals with such orbital
basis set becomes very expensive. Appropriate techniques, connected with extra-
polation to infinite basis set, have been developed and applied to atomic systems
only [15–20]. CI calculations for positronic molecules, carried out up to date,
provided at best some qualitative information [21–25].

The positron was treated on equal footing with electrons in all the above
mentioned methods. Fully different philosophy of treating the positron as a light
pseudonucleus was used in the works of Stachowiak and Boroński [26] and Mo-
hallem et al. [27–30]. The idea of separation of the positronic motion from the
electronic one appeared even earlier — the nonexistence of some bound positronic
atoms has been shown within such approach [31]. The drawback of such separa-
tion is that it bears an irremovable, intrinsic error to all properties of the studied
system. On the other hand, it introduces the familiar notion of potential energy
surface to the positron chemistry and makes it possible to use the whole mature
technology of computational quantum chemistry to obtain this potential energy.
In our previous paper [32], we formulated the adiabatic method in such a manner
that the leptonic energy is variationally bounded. We presented also some prelim-
inary results, but finding the limits of applicability and estimation of the intrinsic
error of our method requires more comparisons with accurate energies and annihi-
lation rates of various positronic systems. The gathered data on positronic atoms
is a good reference.

2. Method

Details of the computational method used by us were discussed in our pre-
vious article [32]. Therefore, this method will be only shortly sketched here. The
problem to be solved is the leptonic Schrödinger equation for fixed nuclear posi-
tions. Let us assume that only one positron is present, and its coordinates will
be denoted as rp, while re will denote coordinates of all electrons in an atom or
molecule. Adiabatic separation of electronic and positronic motions is postulated
by the product form of trial wave function,

Ψlep(rp, re) = Ψp(rp)Ψe(rp, re). (1)
The leptonic Hamiltonian gets partitioned (Ĥlep = Ĥe + Ĥp) and the elec-

tronic wave function (Ψe) has to fulfill the electronic Schrödinger equation

ĤeΨe(rp, re) = Ee(rp)Ψe(rp, re) (2)
for any fixed positronic coordinates. Conceptually, this step is the same as for the
separation of motions of true heavy nuclei from those of light particles. However,
in order to simulate the finite (and small) positron mass effect on the distribution
of the electron density around this particle, the positronic charge is included only
partially into the electronic Hamiltonian
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The quantity qp may be treated as a variational parameter. Remaining part of
positronic charge appears in the positronic Hamiltonian

Ĥp = −1
2
∇2

p +
Nnuc∑

A=1

ZA(1− qp)
rAp

−
Ne∑

i=1

1− qp

rip
(4)

and the equation for positronic wave function[
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also the electrostatic correction
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Therefore, the effective positronic charge qp, occurring in the electronic equation,
is only a partitioning parameter which determines the form of the electronic wave
function, the potential for positronic motion and, consequently, also the positronic
wave function and the leptonic energy. Optimal charge qp gives the lowest value
of Elep.

The potential in Eq. (5) is usually shifted, so that it goes to zero at infinite
positron–nucleus distance

Vp(rp) = Ee(rp) + Ves(rp) + Ead(rp)− Ee(rp →∞)

−Ves(rp →∞)− Ead(rp →∞). (8)
This operation does not change Ψp, but the signs of eigenvalues (positronic states
energies) of the following equation, containing the shifted potential[

T̂p + Vp(rp)
]
Ψp(rp) = EpΨp(rp), (9)

carry the basic information about the character of respective eigenfunctions.
Ep < 0 indicates that a bound state has been obtained. This is the necessary
condition to establish binding, but it is not sufficient, if a given positronic system
dissociates to the positronium atom. The dissociation energy of an AB system (let
A be an atom or molecule)

D0(AB) = Elep(A) + Elep(B)− Elep(AB) (10)
is always equal to −Ep for B = e+. However, for B = Ps, the optimal value of qp(B)
is 0.5 [32], but optimal qp(AB) maybe different. In such situation, establishing the
energetic stability of AB requires explicit calculation of D0 with Eq. (10).

Besides of the energy, the most interesting properties of positronic systems
are those related to annihilation. Electron density on the positron, readily available
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from the leptonic function
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multiplied by the positron density for given rp = R:

dp(R) = 〈Ψlep |δ(rp −R)|Ψlep〉 = |Ψp(R)|2 (12)
yields the electron–positron contact density
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Integrating dep over R leads to the electron–positron coalescence

〈δep〉 = 〈Ψlep
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to which the two-photon annihilation rate is directly proportional. For closed-shell
electronic subsystems and 〈δep〉 expressed in atomic units, respective formula can
be written as

Γ2 = πα4a−1
0 c〈δep〉. (15)

3. Details of calculations

In our previous work [32], in which the method was tested for model of one-
-electron atoms with fractional nuclear charges and for positronium hydride, the
electronic Schrödinger equation was solved in the basis of floating spherical (for
one-electron systems) or explictly correlated Gaussian functions (for PsH). Param-
eters of these functions — exponents and positions of centers — were individually
optimized for each positron–nucleus distance, giving very accurate potential en-
ergy curves for positronic motion. We estimated that their errors did not exceed a
few microhartrees. Discrepancies of those calculations with almost exact reference
results were to be attributed to the intrinsic error of the adiabatic approximation.
Such an approach would be impossible to be realized in the present work, because
of larger number of electrons in the studied atoms. Computing even a single point
of the potential energy curve for a 4-electron system in the basis of ECG func-
tions, with accuracy comparable to that achieved in the previous work, would be
a very demanding and time consuming task. Therefore, we used the configuration
interaction method with frozen electronic cores.

Our calculations were carried out in a fixed, finite orbital basis set, which
was the source of additional errors, unrelated to the adiabatic approximation.
The first one was the basis set superposition error, which was corrected within
the counterpoise procedure — in computation of the potential defined by Eq. (8),
the electronic energy Ee and electrostatic correction Ves (the latter only for atoms
dissociating to positronium) of isolated species were obtained in supermolecular
basis set. This procedure was not applied for adiabatic corrections. The second
kind of errors cannot be corrected, as it results from the approximate character
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of the electronic wave function of the interacting system. The accuracy of this
function depends on the basis set, so we had to choose the appropriate basis
for further calculations. Our decision was based on comparing the results for
positronium hydride, for which accurate adiabatic potential energy curves were
available from the earlier work. The values to be reproduced were positronic state
energy and expectation value of 〈δep〉 obtained with ECG functions (see Table I),
for qp = 0.49, which was found to be optimal for this system [32].

TABLE I

Basis set dependence of positronic state en-

ergies and electron–positron coalescences

for PsH.

Basis Ep [hartree] 〈δep〉
ECG –0.02628 0.0431

6-311G** –0.02185 0.0382

6-311++G** –0.01973 0.0377

6-311++G(2d,2p) –0.02231 0.0385

ANO –0.02316 0.0405

We started from the 6-311G** basis, containing a single shell of polarization
functions at each atom. Adding diffuse functions (6-311++G** basis) resulted
in deterioration of the results. This effect means that the energies of isolated
hydrogen and positronium atoms (which do not profit from polarization functions
at all, as they are one-electron systems) were lowered to a larger extent than
that of the interacting system. Replacing one shell of polarization functions by
two such shells in the 6-311++G(2d,2p) basis improved the potential, decreasing
the difference between the reference value of Ep and the one computed with the
CI method to less than 4 millihartrees. Going to a larger basis set of atomic
natural orbitals (ANO, constructed by Roos et al. [33]) augmented by diffuse
functions, resulted in further improvement of Ep by less than 1 millihartree, at
the cost of significant increase in computation times. We planned to use also the
augmented correlation consistent basis sets proposed by Dunning [34], but they
are not available for lithium, beryllium and magnesium atoms. We decided to use
the 6-311++G(2d,2p) basis [35], in order to scan a range of values of qp and find its
optimal value. Then, the ANO basis was used to compute single potential energy
curve for this value of qp. It is important to notice that none of the considered
basis sets overestimated the dissociation energy.

4. Numerical results

4.1. Lithium positride, LiPs

The structure of lithium positride is similar to that of positronium hydride.
Its dissociation energy (to Li and Ps atoms) has been calculated with high accu-
racy, in the basis of explicitly correlated Gaussian functions with fixed electronic
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Fig. 1. Potential energy curves for positronic motion in lithium positride, qp = 0.49.

core, and amounts to 0.012341 hartree [3]. Our potential energy curves were qual-
itatively similar to those computed for PsH. Examples for qp = 0.49 are plotted
in Fig. 1. However, the minimum is more shallow than in PsH and neither the
plotted potentials nor those computed for different values of qp support a bound
state. This apparent failure of adiabatic approximation to provide at least a qual-
itatively correct description of a bound state puts in question the usefulness of our
method in studies of positronium compounds.

4.2. Positronic beryllium, e+Be

In our previous work we obtained quite accurate energy and annihilation rate
for the model positronic atom with Z = 0.9, of which dissociation energy was even
smaller than that of e+Be. After that, we expected that results of comparable
quality could be obtained also for real systems having similar structure, i.e. a
weakly bound positron, whose binding does not cause significant changes of the
electronic structure. The potentials for the positronic motion supported bound
states, but even the dissociation energy computed for optimal qp = 0.57, with
the basis of atomic natural orbitals, was underestimated by the factor of more

TABLE II

Positronic beryllium — comparison of the results obtained within our

adiabatic formalism with other methods.

Method D0 [hartree] 〈rp〉 [bohr] 〈δep〉 [bohr−3]

ECG, fixed corea 0.003180 10.048 0.00850

CI, l ≤ 12a 0.002840 10.48 0.00562

CI, extrapolateda 0.003169 10.10 0.00819

qp = 0.57, ANO 0.000504 20.13 0.00345

qp = 0.57, 6-311++G(2d,2p) 0.000340 23.67 0.00263
aRef. [18]



Theoretical Study of Positronic Atoms . . . 1539

Fig. 2. Potential energy curve and positronic wave function of positronic beryllium for

qp = 0.57, ANO basis.

than 6 (Table II). The positronic wave function is very diffuse (see Fig. 2) and
the average positron–nucleus distance is about twice larger than that obtained in
reference calculations [18]. Consequently, the values of 〈δep〉 are underestimated,
as the positron described with such a diffuse function could not penetrate the
electronic cloud. The difference between adiabatic dissociation energies, obtained
with 6-311++G(2d,2p) and ANO basis sets amounts to 164 µhartrees only, so
probably D0 would remain significantly smaller than 1 millihartree even in the
limit of infinite basis.

4.3. Positronic magnesium, e+Mg

The magnesium atom does bind the positron more tightly than beryllium.
Our results and the most accurate values of dissociation energies of positronic
magnesium and its electron–positron coalescences, available in the literature, have
been collected in Table III. All potential energy curves computed by us supported
bound states and the dependence of Ep on qp for the 6-311++G(2d,2p) basis is

TABLE III

Positronic magnesium — comparison of the results obtained within our

adiabatic formalism with other methods.

Method D0 [hartree] 〈rp〉 [bohr] 〈δep〉 [bohr−3]

ECG, fixed corea 0.016930 6.923 0.0203

CI, l ≤ 12a 0.015658 7.019 0.0128

CI, extrapolateda 0.017040 6.937 0.0198

DMCb 0.0168(14)

qp = 0.573, 6-311++G(2d,2p) 0.009023 8.069 0.01649

qp = 0.573, ANO 0.009984 7.867 0.01837
aRef. [18]; bRef. [12]
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Fig. 3. Positronic state energy in e+Mg as function of effective positronic charge qp for

6-311++G(2d,2p) basis.

Fig. 4. Potential energy curve and positronic wave function of positronic magnesium

for qp = 0.573, 6-311++G(2d,2p) basis.

plotted in Fig. 3. We have to admit again that our method does not compare very
well with accurate calculations, either variational (ECG and CI) or Monte Carlo
simulations — the dissociation energy is underestimated by 7–8 millihartrees, so its
absolute error is even twice larger than for positronic beryllium. However, because
of the larger value of D0, its relative error is close to only 40%. The positronic
wave function is much better localized in the minimum of the potential (Fig. 4) and
reasonable values of the average positron–nucleus distance and electron–positron
coalescence have been obtained for optimal qp = 0.573.

5. Discussion
The results we obtained for lithium positride, positronic beryllium, and

positronic magnesium, clearly indicate that the domain of applicability of our
adiabatic method for the description of positronic bound states is narrower than
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we expected. For positronium compounds, like LiPs, this method may even ap-
pear to be unable to yield a bound state wave function. Serious underestimation of
the dissociation energy of positronic beryllium means that the short-range corre-
lations between electronic and positronic motions are more important for positron
binding than polarization of the electronic wave function by the positron. These
correlations appear to be nonadiabatic by their nature — the electrons follow the
positron, but also the positron should follow the electrons. Only the calculation
carried out for e+Mg atom may be regarded as partially successful, especially
because of good value of 〈δep〉. This success could be attributed to the dipole
polarizability of magnesium, which is about twice larger than that of beryllium
[36] and makes the effect of long-range polarization of the electron distribution
relatively more important.

A practical remedy for the deficiencies of our adiabatic method could be
possibly the inclusion of a heuristic nonadiabatic correction in the form of modified
positron mass in Eq. (5). Such a modification, in which the averaged electron
population on the positron is added to the positron mass, has been proposed
recently by Mohallem et al. [37]. The price to be paid is the loss of variational
bounds on the leptonic energy. Such an approach could be studied in a future
work.

Finally, it should be asked why the adiabatic method worked well for model
one-electron positronic atoms with fractional Z in the range 0.7–0.9 [32]. The
answer seems to be simple, but it has been overlooked by us, while working on
the earlier article. In those atoms, static potentials were present, resulting from
unbalanced total charges and supporting the positron binding even without taking
the dynamic correlation into account. This oversight resulted in non-satisfied
expectations related to atoms with weakly bound positron. On the other hand,
similar static potentials (dipole, quadrupole) occur for many molecules, for which
the positron binding still remains in the area of presumptions and could be possibly
studied with our method.
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