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The adiabatic approximation to positronic atoms and molecules was

considered as an option to the computationally unfeasible methods that treat

all particles in a common footing, in two different approaches communicated

in the 37th PSPA. Here we present further assessment and comparison of

the two approaches as a way of evaluating the potential of adiabatic or, as

we found preferable, molecular approaches.
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1. Introduction

Positronic atoms and molecules represent a special challenge to theoreti-
cians, since the presence of a light but positively charged positron makes unfea-
sible the traditional approaches based on the different masses of the constituent
particles. The solution seemed to be to treat all particles on a common footing in
full nonadiabatic quantum mechanical calculations. From this very starting point
the possibility of interpreting the physical and chemical properties of positronic
systems in terms of a common basic model is lost; each system is a particular
problem. However, the prospect of predicting bound and resonant states not yet
observed as well as to calculate scattering states to compare theoretical and ex-
perimental cross-sections boosted the theoretical research on positronic systems
with these methods, mainly in the last decade. Three main all-body methods are
worth to be cited. The powerful stochastic variational method (SVM) [1, 2] and
quantum Monte Carlo (QMC) [3–5] generated converged binding energies and an-
nihilation rate constants† for small positronic atoms. However, they seem to have
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“annihilation rate constant” instead of just “annihilation rate” since this last quantity is
time dependent.
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reached their computational limit. Any reliable application to few-active-electrons
positronic atom or molecule is predicted to take even years of computing time. Ap-
plications to positronic molecules have been considered mainly on the basis of the
configuration interaction (CI) method [6, 7], in which electron (through a determi-
nantal wave function) and positron orbital excitations are allowed. Nevertheless,
small truncated CI expansions and frozen molecular geometries generate doubtful
results [8–10], while larger expansions and allowance of geometry relaxation turns
it to be computationally limited, too. Furthermore, it behaves poorly in the calcu-
lation of annihilation rate constants. As a result of these difficulties, this research
suffered a depression in the last years, with the number of published results being
strongly diminished.

In face of this dilemma, a real change of paradigm is being considered: the
idea of treating the positron as a pseudonucleus has eventually appeared in the
literature, mostly in phenomenological or model calculations [11–16]. It has been
proposed to go further and to perform a widespread adiabatic separation of mo-
tions of positively charged particles, positron plus nuclei, and electrons. The
answer to the title question has not been given yet, but some insight provided
by the discussions during the 37th PSPA as well as some new motivations can be
advanced here.

Besides the vital consideration of computational time, at least one further
previous motivation for such an approach can be devised. It is well known that
molecular adiabatic methods describe satisfactorily the electronic density on the
nuclei, since electronic basis functions can be, and commonly are, centered on
the nuclei. The perspective of repeating this feature for the positron as a special
nucleus is a very stimulating one, since it predicts a good performance of an
adiabatic based method for annihilation rate constants. Two methodologies has
been communicated in the 37th PSPA, both in early phases of development, but
some of their features can be already assessed and compared. In the following
analysis, we consider the interaction of a positron with a single atom, just for
simplicity.

2. Models
In any adiabatic approximation the total Hamiltonian is partitioned in others

involving different degrees of freedom. The Polish (Pol) initiative is based on a par-
tition of the clamped-nuclei Hamiltonian in an electronic one and a positronic one
following the interesting idea of taking the positronic charge not as +1 (in atomic
units, a.u.) but as effective charges qp, that appears in the electronic Hamilto-
nian and (1 − qp), that appear in the positronic one [17]. The two Hamiltonians
are defined accordingly, the electronic equation is solved generating an “electronic
energy” that, together with the effective electrostatic repulsion and the common
adiabatic correction form the potential energy curves (PECs) for positron motion.
Positronic states are obtained from the solution of the positronic equation with
these PECs. The adiabatic correction accounts for the small mass of the positron.
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On the other hand, in the Brazilian (Braz) approach the positron is taken
in the equations as a real nucleus but its finite mass correction is inserted in the
electronic Hamiltonian through a special and approximate transformation from
the laboratory-fixed to the system-fixed reference frames [18]. This makes the
electronic Hamiltonian dependent on the nuclear masses. This electronic Hamil-
tonian generates the electronic states having the signature of the nuclear masses,
particularly the small positron mass. Electronic energies plus positron–nucleus
repulsion yields the PECs and solution of the resulting “nuclear” equation gives
the positronic states.

Thus, both methods aim at describing better the electronic density on the
positron by allowing electronic basis functions to be positron-centered (though the
Pol method allows the Gaussian functions to flow in order to be more variational),
but are strongly different in spirit.

Let us now compare them in a case they have both been applied to, the
positronium hydride, HPs. This case has the advantage that HPs is recognized
as an actual nonadiabatic system, in view of the highly correlated motion of the
electron–positron pair in the positronium (Ps) cluster. The Pol model is more
sophisticated on its adiabatic single level due to its charge partition effect. As
a consequence, it yields a better eigenvalue, −0.7762 a.u. [17], than the purely
adiabatic Braz one, −0.7668 a.u. [15], both to be compared to the exact eigen-
value −0.7891 a.u. [19]. This improvement should be connected to the variational
flexibility allowed by the introduction of the qp parameter, reflected on the un-
physical peaks in the PECs (see Fig. 1 in [17]). However, in view of the exact
value of the threshold energy (H + Ps) yielded by both methods, the calculated
binding energies are quite poor so that the application is reported by the Pol
authors as a failure. On the other hand, both methods give good values for the
annihilation rate constant (Braz), or for the equivalent electron–positron coales-
cence (Pol), accordingly to the very motivation of introducing such methods in
the field. Unfortunately, there is no common application of the two methods to a
positron–neutral atom system, for which the binding energy is orders of magnitude
lower. Anyway, in such a case both adiabatic eigenvalues and threshold energy
become approximate, at least partial error compensation would happen so that
the Pol approach is supposed to still work reasonably, as suggested by the model
applications [17].

Except for tightly bonded Ps complexes, the Braz approach does not gener-
ate bound states on the adiabatic level at all, though the resulting PECs describe
properly the threshold behavior and the electron densities for fixed positron posi-
tions [20]. This level has been considered, on the other hand, as the first step in
a two-step molecular approach to positronic systems. This first step applies just
to yield the electronic states and the PECs needed to proceed toward the final
calculations. It generates a set of electronic states whose nonadiabatic couplings
are needed to describe any positronic system exactly. To illustrate the second step
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we resort again to HPs. Instead of solving complicated coupled equations, it is
possible to mimic the main nonadiabatic effect with a phenomenological procedure
suggested by physical analysis. The ground state PEC is well isolated, meaning
that no strong local coupling (crossing or pseudo-crossing) takes place. The whole
effect of coupling excited states to the ground one would be to allow the excitation
of a electron so that it becomes able to follow the positron motion, forming the Ps
cluster. This effect can be simulated by just keeping the motion of the positron in
the ground state PEC but changing its mass to an effective one accounting also
to the mass of an electron it draws in its motion. With this empirical procedure,
the almost exact energy eigenvalue −0.7879 a.u. is generated [15].

Let us proceed now to a general analysis. The energy eigenvalues of the
nonadiabatic HPs given by the two adiabatic methods are poor in the sense of
presenting errors of 2.8% error for Braz and 1.3% for Pol relative to the exact
eigenvalue. Although not valuable to calculate the binding energies, they are quite
close to the exact eigenvalue, meaning that the adiabatic component of the full
HPs wave function is very large and accounts for some properties other than the
binding energy, as annihilation rate constants. The “nonadiabaticity” of positron
complexes seems to be just a small step over the adiabatic one. This means that
once an adiabatic step takes place, we become quite closer to the actual solution
of the problem. This starting point is not to be underestimated. The step-up
is easier in the Braz approach, in consequence of its resemblance with the well
known adiabatic and nonadiabatic procedures within the Born–Huang theory of
molecules [21]. This does not mean, however, that an equivalent step cannot be
found for the Pol approach.

3. Conclusions

In conclusion, although further comparison cannot be made at this point,
it seems that Pol is a very appropriate approach for systems that behave adi-
abatically, with a probable better performance than Braz. On the other hand,
the nonadiabatic step of the Braz approach seems to admit to reach equivalent
accuracy of the more sophisticated methods cited in the indroduction. All these
considerations justify our confidence that improved adiabatic (or preferred molecu-
lar) based approaches can be developed in order to increase our predictive capacity
for positronic systems in the future.
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