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The most effective and popular algorithms to reconstruct the three-

-dimensional electron–positron momentum density from the measurements

of the two-dimensional angular correlation of annihilation radiation are based

on the Fourier transform or polynomial expansion. We compare the efficacy

of different methods in reconstructing the momentum density of the rare-

-earth based compounds ErGa3, CeIn3 and model profiles, presenting also

our new filtering algorithm.
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1. Introduction

The problem of reconstructing densities from line projections via comput-
erized tomography algorithms has been investigated extensively, mostly for ap-
plications in medical diagnostics [1, 2]. By measuring two-dimensional angular
correlation of annihilation radiation (2D ACAR) spectra [3] we also obtain the
line integrals of a density but in the extended momentum space p:

g(p′y, p′z) =
∫ ∞

−∞
dp′xρ(p). (1)

Three reconstruction techniques based on analytical solutions of Eq. (1) and
described in the paper are (i) the Cormack method (CM) [4] modified to include
various planar symmetries [5], (ii) the filtered back projections (FBP) [6] and
(iii) the modification of the FBP as proposed in Ref. [7]. These algorithms reduce
the 3D reconstruction to multiple reconstructions of 2D densities, performed inde-
pendently on adjacent parallel planes, perpendicular to a fixed direction p′z = pz.

2. Models and discussion

i) Generally, 2D functions g and ρ can be expanded into polar Fourier series
corresponding to 2D lattice harmonics. The choice of planes pz = const perpen-

(1429)



1430 G. Kontrym-Sznajd, M. Samsel-CzekaÃla, M. Biasini

dicular to the main rotation axis of the crystal, where the number of equivalent
directions is maximal, allows one to expand both spectra and densities into the
following series [5]:

ρ(p) ≡ ρ(p,Θ) =
∞∑

n=0

ρn(p) cos(nΘ), (2)

g(px, py = const) ≡ g(t, ϕ) =
∞∑

n=0

Nn(t) cos(nϕ), (3)

with n = i|R| (i = 0, 1, 2. . . ) where |R| denotes the order of the main rotation axis.
In CM the radial parts of projections gl(r) and densities ρl(r) are given as a series
of the Chebyshev of the second kind and the Zernike polynomials, respectively [4].

ii) The FBP technique, proposed by Brooks and Chiro [6], utilizes the convo-
lution filtering and sampling theorem [8] and yields the reconstructed data within
two steps

1◦ W (si, ϕ) =
g(si, ϕ)

4∆s
− 1

π2∆s

n∑

j=1

g(sj , ϕ)
(i− j)2

, (4)

over all j for which i − j is odd; ∆s denotes the interval between experimental
points.

2◦ ρ(p,Θ) =
∫ π

0

W [p cos(Θ − ϕ)]dϕ. (5)

Since functions W describing electronic densities are strongly varying at the
Fermi surface, it is necessary to provide a very fine step ∆ϕ (even in the case
of an isotropic model). Conversely, very strong fluctuations of the reconstructed
densities above the Fermi momentum, shown in Fig. 1, affect the resulting ρ(p,Θ).

iii) In alternative, having a small number of measured projections, one could
expand the function W into the same series as in Eq. (2) or (3), getting [7],

ρ(p,Θ) =
∑

n

∫ π

0

Wn[p cos(Θ − ϕ)] cos(nϕ)dϕ. (6)

The modified FBP (MFBP) and CM applied to model densities (i.e. in
absence of experimental noise) produce the same results (in the case when ∆ϕ =
1◦), unlike the standard FBP that gives strong artificial oscillations — see Fig. 1
where these methods (parts (b) and (c)) are applied to a model spectrum (part
(a)).

Figure 2 presents densities reconstructed from four 2D ACAR spectra in
ErGa3 [9]. Results have been obtained by applying: (i) CM; (ii) standard FBP with
using 4 experimental spectra; (iii) MFBP with large and small ∆ϕ (11.5◦ and 1◦,
denoted in the figure as MFBP-1 and MFBP-2, respectively). Furthermore, Fig. 2
shows a novel procedure, denoted as lattice harmonics expansion (LHE), applied
lately to LaB6 [10]. LHE is based on the expansion of densities directly in 3D
space via the 3D lattice harmonics. This method was able to reconstruct in LaB6
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Fig. 1. Model density ρ(p) (upper part) reconstructed from five projections (lower

part) by applying FBP (c), and CM (b).

a fine piece of the Fermi surface in the 15th band (observed also in the de Haas–van
Alphen (dHvA) experiment [11, 12]) that other reconstruction techniques failed
to reproduce [13]. Results of the latest band structure calculations in LaB6 [14]
(unlike those reported in Refs. [15, 16]) confirmed the existence of this element.

The LHE algorithm, described in detail in Refs. [10, 17], not only filters
experimental noise but also enhances details of reconstructed densities since it de-
termines more density components ρn(p) than the number of spectra used. Indeed,
the LHE method, unlike CM, FBP, and MFBP, does not consider the densities on
adjacent reconstructed planes, normal to the rotation axis, as independent. Quite
the reverse, via the LHE technique one constructs the 3D density in a single step,
imposing the full 3D cubic symmetry of the momentum density. In the case of
ErGa3, the algorithm (labelled as LHE(6)) reproduced with good accuracy six
density components.

Figure 2 shows that the FBP and MFBP-1 techniques produce strong fluctu-
ations, due to a too large angular step ∆ϕ. When ∆ϕ = 1◦, MFBP method gives
similar results to CM and LHE algorithms apart from the electron pocket around
the X point which is somehow enhanced by LHE. Let us note that whereas the
CM and FBP results have been symmetrized to impose the 3D cubic symmetry
(as described below), the LHE results have the proper 3D symmetry by construc-
tion. The symmetrization of the CM and FBP data is accomplished through the
following conditions:

ρ(px, py, pz) = ρ(py, pz, px) = ρ(px, pz, py). (7)
The constraints reconcile densities with the requirement that the nonequiv-
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Fig. 2. Densities ρ(p) in ErGa3, on high symmetry planes, reconstructed by FBP,

MFBP-1, MFBP-2, CM and LHE(6) techniques, compared with the Fermi sur-

face sections calculated via linear muffin-tin orbital–atomic spheres approximation

(LMTO-ASA) band structure code [18]. The white regions centered at the R point

contain occupied (electrons) from the 7th valence band and the darkest areas corre-

spond to unoccupied states (holes) from the 6th band.

alent fraction of the Brillouin zone (BZ) is equal to 1/48, unlike the requirements
of the structures with one 4-fold main rotation axis (C4v group), limited to the
equivalency of 1/16 of BZ. As explained in detail in Ref. [17] the symmetrization
operated with Eq. (7) is similar, but not the same, to the steps of the LHE filtering
algorithm.

Figure 3 shows the anisotropic part of the densities in the extended zone of
the simple cubic compound CeIn3 reconstructed from five or three 2D ACAR spec-
tra [19]. The 2D densities were reconstructed by CM independently of each other
(and for independently measured data set) on planes perpendicular to the [001]
direction. Figure 3 shows 60 planes with spacing 0.02 (a.u.)−1 (atomic units of
momentum).

What is the difference between the CM and LHE reconstruction techniques?
Since the densities on the planes (001) are described by the cosine Fourier se-
ries (Eq. (2)) with n = 0, 4,. . . etc., one has the correct symmetry with regard
to the [110] direction. Depending on the number of experimental projections, in
Eq. (3) we can use 3 [n = 0, 4, 8, CM(3)] or 5 terms [n = 0, 4, 8, 12, 15, CM(5)].
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Fig. 3. The anisotropic part of densities reconstructed from three or five projections in

CeIn3 by using two reconstruction algorithms (CM and LHE) in the momentum range

(0, 1.2)×(0, 1.2) (a.u.)−2. Left part — results on two planes perpendicular to each other

for CM(3), i.e the CM applied to 3 projections. Right part — reconstructed densities

after symmetrization.

Results for CM(3) show that three terms cos(nϕ) cannot describe densities prop-
erly (even on the planes (001) where they are too much smeared). The density
on the (100) plane shows clearly undesirable effects: (i) lack of symmetry with re-
gard to [101] axis, (ii) large discrepancies between the two equivalent planes (001)
and (100).

However, after imposing on densities the symmetry requirement [Eq. (7)],
the results for CM are noticeably improved and become very similar to LHE results.
It is worth noting that the LHE method enhances the anisotropy and the results
for LHE(3) are very similar to those produced via LHE(5). Meanwhile, results
for CM(3) are somewhat different, e.g. there are lower amplitude variation of the
maxima along the [100] direction.

3. Conclusions

In summary, we can draw the following conclusions:
1. After a simple modification, the FBP method, which is very simple to

use, yields for projections without statistical noise the same results as CM.
2. However, since the CM is based on expansions of experimental data into

orthogonal polynomials, essentially it reduces the experimental noise when applied
to real data. The expansion has a similar effect as a mean squares fitting procedure.

3. Compared to CM (even with symmetry conditions (7)), the LHE algo-
rithm, due to its stricter symmetry requirements [17], filters better the exper-
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imental noise and enhances fine features of the reconstructed densities. These
advantages are pronounced when LHE is applied to densities reconstructed from
a small number of projections (e.g. for three projections, as shown for CeIn3 here
and for LaB6 in Ref. [10]).

4. Our experience points out that (i) it is sufficient to measure 5 projections
in the case of cubic structures; (ii) assuming a total number of counts C from all
the measured projections it is preferable to concentrate the counts into fewer high-
-statistics experimental data sets instead of several low-statistics spectra. After
the data taking, a standard reconstruction technique such as the Cormack method,
together with the symmetry requirement, should produce acceptable results.
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