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Intermetallic compounds AB5 type (A = rare-earth atoms, B = transi-

tion metal) are known to store reversibly large amounts of hydrogen and as

that are discussed in this work. It was shown that the alloy cycling stability

can be significantly improved by employing the so-called non-stoichiometric

compounds AB5+x and that is why analysis of change of structure turned

out to be interesting. A tendency for ordering of hydrogen atoms is one of

the most intriguing problems for the unsaturated hydrides. The symmetry

analysis method in the frame of the theory of space group and their repre-

sentation gives opportunity to find all possible transformations of the parent

structure. In this work symmetry analysis method was applied for AB5+x

structure type (P6/mmm parent symmetry space group). There were inves-

tigated all possible ordering types and accompanying atom displacements in

positions 1a, 2c, 3g (fully occupied in stoichiometric compounds AB5), in po-

sitions 2e, 6l (where atom B could appear in non-stoichiometric compounds)

and also 4h, 6m, 6k, 12n, 12o, which could be partly occupied by hydrogen

as a result of hydrides. An analysis was carried out of all possible structures

of lower symmetry, following from P6/mmm for k = (0, 0, 0). Also the way

of getting the structure described by the P63mc space group with double

cell along the z-axis k = (0, 0, 0.5), as it is suggested in the work of Latroche

et al. is discussed by the symmetry analysis. The analysis was obtained

by computer program MODY. The program calculates the so-called basis

vectors of irreducible representations of a given symmetry group, which can

be used for calculation of possible ordering modes.

PACS numbers: 64.60.Cn

1. Introduction to the symmetry analysis
The symmetry analysis based on the theory of groups and representations

was at first introduced by Bertaut [1, 2] in the description of magnetic ordering
in crystals. He obtained the symmetry-adapted ordering modes, derived from
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the representation analysis by calculation of the basis vectors of irreducible rep-
resentations (IRs). Later that line of analysis has been developed by many other
theoreticians, like Izyumov [3] and others.

The superstructure as the ordering of some “property” of the initial crystal
structure may occur as the result of phase transition under the action of temper-
ature, magnetic field, or pressure. Each of the properties of the crystal localised
on atom sites may be described by a Wannier function S defined on some set of
equivalent positions. It may be a function type scalar — describing for example
change of probability of sites occupation, a vector-polar type describing for exam-
ple displacements of atoms from equilibrium positions, an axial-type describing
for example ordering of magnetic moments, or a tensor-type describing for ex-
ample ordering of quadrupole momentum. The presentation of this function in
the usually used frame of coordinates related to the crystallographic system takes
advantage of translation symmetry only. The other symmetry relations are lost in
this description and as a consequence the description of many crystal properties is
not as simple as possible. The presentation of model structures in the frame of ba-
sic vectors of irreducible representations of the initial symmetry group (BV )Ψkl,ν

λ ,
instead of that in the frame of crystallographic system (x, y, z), is the best match-
ing to the symmetry of the problem and it provides the simplest (requiring the
lowest number of independent parameters) form of the structure description

S =
∑

l,νλ

ckl,ν
λ Ψkl,ν

λ (1)

(l — number of k vectors, ν — number of IRs, λ — number of dimensions of
ν’s IR). The symmetry group G(k) of the k vectors is a subgroup of the space
group G. From this fact follows that the set of equivalent positions in the group
G, the so-called orbit in G, may split into independent sets of equivalent positions
in G(k). Thus, one orbit in the group G can lead to two or more orbits in the
G(k) subgroup. The symmetry considerations are able to indicate the relations
between the old sets of equivalent positions (in the parent group) and the new sets
of equivalent positions (in resulting subgroup).

The form of the basis vectors and the information which of the represen-
tations take part in the phase transition under consideration are directly given
by the theory of groups and representations. In this work we use the computer
programme MODY [4] (there are also another computer programs [5–8]), which is
based on the theory of groups and representations, to calculate this information. It
is important to note that the basis vectors have the same translational properties
as the Bloch functions. Therefore, the basis vectors may be defined on positions
of given orbit in the elementary cell of the crystal as well as in the elementary
cell translated by a lattice vector t, which just corresponds to a multiplication by
eik1t. Not all from the possible ckl,ν

λ are allowed, because the parameters should
be selected in such way that the resulting magnetic moments related to all atoms
have real values. This condition influences the set of equations which the ckl,ν

λ have
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to satisfy and as a result the number of independent free parameters is reduced
and strictly determined. After such operation the final model contains clearly de-
fined minimum number of free parameters and presents strictly defined relations
between localised on different crystal sites quantities describing considered prop-
erty. Each choice of these free parameters uniquely determines one of the possible
models of new structure that may be realised after the phase transition.

The coefficients ckl,ν
λ form also good order parameters of phase transitions.

The symmetry analysis allows us to find the symmetry group of the new structure,
followed by a given representation, active in the phase transition. Basic vectors
Ψkl,ν

λ transform under the action of elements of the parent symmetry group by
the set of matrices of τν representation. Because the coefficients ckl,ν

λ of the linear
combination are the components of the analysed property in the frame of Ψkl,ν

λ

vectors, they transform according to τ−1
ν matrices. These symmetry elements

which leave the set of components ckl,ν
λ invariant belong to the structure symmetry

group after the phase transition.
The choice of representation τν and the coefficients ckl,ν

λ uniquely determines
the symmetry of the structure, independently of the kind of the property taken
into account. The type of phase transition and the property under consideration
is included in the form of basic vectors!

2. Symmetry analysis of order–disorder phase transitions
and associated displacements of atoms

One of the cases of symmetry analysis is encountered for scalar physical
quantities, represented by occupation probability of local ion sites in a given crystal
structure. An essential physical assumption about the parent, high symmetry
phase, states that in the high-symmetry phase the occupation probability P on
all allowed interstitial sites should be the same. The actual value depends on the
hydrogen concentration and the number of occupied symmetry equivalent sites.

The calculated values, describing the ordering of H atoms, always denote
the change ∆P of the site occupation probability P from the equilibrium values
mentioned above. Each subset of symmetry equivalent sites, called an orbit in the
given subgroup, is occupied with the same probability P ′. If P ′ = 1 the subgroup
orbit is fully occupied. P ′ = 0 means that the subgroup orbit is empty after the
ordering. The condition 0 < P ′ < 1 means that the hydrogen diffusion takes place
within the given orbit. There is one more physical assumption: the sum of ∆P

over all sites of the initial symmetry equivalent set has to be zero, which actually
represents a kind of “mass conservation law”, and appears in the situation, when
no diffusion of H atoms between different interstitial parent structure orbits is
observed.

The relations between the obtained probability changes on different orbits
of the new structure do not depend also on the total concentration of hydrogen
atoms in the structure. The hydrogen concentration has the influence on the
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quantity of possible Cλ parameters and a possibility of complete occupation of
given subgroup orbits. Because of the strong coupling between the site position and
site occupation probabilities there are often observed atomic displacements, which
accompany the occupation probability changes. These atomic displacements can
also be calculated by symmetry analysis, as the IR active in both transitions must
be the same by the requirements of symmetry consistency. This method had been
applied to the discussion of the structural changes followed by the hydrogenation
of cubic intermetallic Laves phases [9, 10].

3. AB5 structure details

The parent AB5 structure (presented in Fig. 1) belongs to hexagonal system
with symmetry space group P6/mmm (191). Possible ordering type and accom-
panying atom displacements in positions A — 1a, B — 2c, 3g (fully occupied in
stoichiometric compounds AB5), in positions 2e, 6l (where atom B could appear in
non-stoichiometric compounds AB5+x) and also 4h, 6m, 6k, 12n, 12o (which could
be partly occupied by hydrogen as a result of hydrides) have been investigated.
Analysis of all possible structures on invariable lattice (k = 0,0,0) was carried out.

Fig. 1. The parent AB5 structure.

4. Results of the symmetry analysis

There are analysed all possible transformations of the parent structure with
symmetry space group P6/mmm leading to the structures of lower symmetry, for
k = (0, 0, 0). All possible active representations of invariable lattice (k = 0, 0, 0)
for different positions and for different types of orderings (modes) are shown in
Table I. Types of modes are signed in this table as: S — scalar for describing
change of probability of sites occupation; P — polar for describing displacement
of atoms from equilibrium positions in high symmetry structure; A — axial for
describing ordering of magnetic moments.
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TABLE I

Active representations of invariable lattice (k = 0,0,0) for different

positions and for different types of orderings (modes).

Type Representation

Position of dimension 1 dimension 2

mode

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12

S + – – – – – – – – – – –

1a P – – – + – – – – – + – –

A – – + – – – – – + – – –

S + – – – – – – + – – – –

2c P – – – + + – – – – + + –

A – – + – – + – – + – – +

S + – – – – – – – – – + –

3g P – – – + – + – + – + – +

A – – + – + – + – + – + –

S + – – – – – – + – + + –

6l P + – + + + + – + + + + +

A – + + + + + + – + + + +

S + – – + – – – – – – – –

2e P + – – + – – – – + + – –

A – + + – – – – – + + – –

S + – – + + – – + – – – –

4h P + – – + + – – + + + + +

A – + + – – + + – + + + +

S + – – – – – – + – + + –

6m P + – + + + + – + + + + +

A – + + + + + + – + + + +

S + – – + – + + – + + + +

12n P + + + + + + + + + + + +

A + + + + + + + + + + + +

S + – – + + – – + + + + +

12o P + + + + + + + + + + + +

A + + + + + + + + + + + +

The symmetry analysis gives opportunity to calculate subgroups of the par-
ent P6/mmm group following from active IRs and ordering parameters ckl,ν

λ . The
result of the analysis for k = (0, 0, 0) is shown in Table II.

In such structures of lower symmetry the hydrogen interstitial positions be-
longing to one orbit in the high symmetry group split into suborbits with differ-
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TABLE II

Subgroups of P6/mmm group following from active IRs

with k = (0, 0, 0) and ordering parameters ckl,ν
λ .

Representation Parameters c
kl,ν
λ Destination groups

τ1 c P6/mmm (191)

τ2 c P622 (177)

τ3 c P6/m (175)

τ4 c P6mm (183)

τ5 c P -3m1 (164)

τ6 c P -62m (189)

τ7 c P -31m (162)

τ8 c P -6m2 (187)

τ9 (c, c) C2/m (12)

(c,−c) -‖-
(c, ceiπ/3) -‖-

(c, c2) P -1 (2)

τ10 (c, c) Amm2 (38)

(c,−c) -‖-
(c,±ce±iπ/3) -‖-

(c1, c2) Pm (6)

τ11 (c, c) Cmmm (65)

(c,−c) P2/m (10)

(c, ceiπ/3) -‖-
(c1, c2) -‖-

τ12 (c, c) C222 (21)

(c,−c) Cmm2 (35)

(c, ceiπ/3) -‖-
(c1, c2) P2 (3)

entiated local symmetries and abundances. If one of such sublattices has different
hydrogen site occupation P ′ than the others, we receive effect of hydrogen ordering.

The possible site occupation changes ∆P , calculated in the frame of the
symmetry analysis method for all possible cases (except monoclinic ones) following
from parent group P6/mmm (191), are quoted in Table III. The τ2 and τ3 IRs are
active in the S-type phase transitions for none positions (see Table I), thus they
do not appear in the table. In Table III the splittings of P6/mmm equivalent
positions to the corresponding subgroup orbits are also given. Calculated ∆P

quantities correspond to the splitting on suborbits. At each position belonging
to given suborbit ∆P is the same, thus only the representatives of the subgroup
orbits are noted in the table.
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TABLE III

The possible site occupation changes ∆P . The splitting of P6/mmm equiva-

lent positions to the corresponding subgroup orbits.

Destination group Wyckoff representatives of ∆P

position in Wyckoff position in

P6/mmm destination group

τ1 1a 1a (0, 0, 0) Ca

P6/mmm (191) 2c 2c (1/3, 2/3, 0) Cc

2e 2e (0, 0, z) Ce

3g 3g (1/2, 0, 1/2) Cg

6l 6l (x, 2x, 0) Cl

4h 4h (1/3, 2/3, z) Ch

6m 6m (x, 2x, 1/2) Cm

12n 12n (x, 0, z) Cn

12o 12o (x, 2x, z) Co

τ4 2e 1a1 (0, 0, z) Ca

P6mm (183) 1a2 (0, 0, −z) −Ca

4h 2b1 (1/3, 2/3, z) Ch

2b2 (1/3, 2/3, −z) −Ch

12n 6d1 (x, 0, z) Cn

6d2 (x, 0, −z) −Cn

12o 6e1 (x, 2x, z) Co

6e2 (x, 2x, −z) −Co

τ5 4h 2d1 (1/3, 2/3, z) Ch

P -3m1 (164) 2d2 (1/3, 2/3, −z) −Ch

12o 6i1 (x, 2x, z) Co

6i2 (−x, x, z) −Co

τ6 12n 6i1 (x, 0, z) Cn

P -62m (189) 6i2 (x, x, z) −Cn

τ7 12n 6k1 (x, 0, z) Cn

P -31m (162) 6k2 (x, x, z) −Cn

τ8 2c 1c (1/3, 2/3, 0) Cc

P -6m2 (187) 1e (2/3, 1/3, 0) −Cc

6l 3j1 (x, 2x, 0) Cl

3j2 (−x, x, 0) −Cl

4h 2h (1/3, 2/3, z) Ch

2i (2/3, 1/3, z) −Ch

6m 3k1 (x, 2x, 1/2) Cm

3k2 (−x, x, 1/2) −Cm

12o 6n1 (x, 2x, z) Co

6n2 (−x, x, z) −Co
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TABLE III (cont.)

τ9 (c1, c2) 12n 2e1 (x, 0, z) Cn1

P -1 (2) 2e2 (x, x, z) Cn2

2e3 (0, x, z) Cn3

2e4 (−x, 0, z) −Cn1

2e5 (−x, −x, z) −Cn2

2e6 (0, −x, z) −Cn3

12o 2e1 (x, 2x, z) Co1

2e2 (−x, x, z) Co2

2e3 (−2x, −x, z) Co3

2e4 (−x, −2x, z) −Co1

2e5 (x, −x, z) −Co2

2e6 (2x, x, z) −Co3

τ10(c,±ce±iπ/3) 6m (x,2x,1/2) 2b1 (1/2, 0, x) 2Cm

Amm2 (38) (−x, x, 1/2) 4e1 (1/2,−3x/2, x/2) Cm

(−2x, −x,1/2) 4e2 (1/2,−3x/2,−x/2) −Cm

(−x,−2x,1/2) 2b2 (1/2, 0,−x) −2Cm

6l (x, 2x, 0) 2a1 (0,0,x)

(−x, x, 0) 4d1 (0,−3x/2, x/2) Cl

(−2x,−x, 0) 4d2 (0,−3x/2,−x/2) −Cl

(−x,−2x, 0) 2a2 (0,0,−x) −2Cl

12n (x, 0, z) 4c1 (x, 0, z) 2Cn

(x, x, z) 8f1 (z,−x/2, x/2) Cn

(0, x, z) 8f2 (z,−x/2,−x/2) −Cn

(−x, 0, z) 4c2 (z, 0,−x) −2Cn

12o (x, 2x, z) 4c1 (z, 0, x) 2Co

(−x, x, z) 8f1 (z,−3x/2, x/2) Co

(−2x,−x, z) 8f2 (z,−3x/2,−x/2) −Co

(−x,−2x, z) 4c2 (z, 0,−x) −2Co

τ11(c
′, c′) 3g (1/2,0,1/2) 4f (1/4,3/4,1/2) Cg

Cmmm (65) (1/2,1/2,1/2) (3/4,1/4,1/2) Cg

c′ = ceiπ/3 (1/4,1/4,1/2) Cg

(3/4,3/4,1/2) Cg

(0,1/2,1/2) 2c (0,1/2,1/2) −2Cg

(1/2,0,1/2) −2Cg

6l (x, 2x, 0) 8p (x/2, 3x/2 + 1, 0) Cl

(1 + x, 2x, 0)

(−2x,−x, 0) 4g (−x, 0, 0) −2C1

(1− 2x,−x, 0)

6m (x, 2x, 1/2) 8q (x/2, 3x/2 + 1, 1/2) Cm

(−2x,−x, 1/2) 4h (−x, 0, 1/2) −2Cm
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TABLE III (cont.)

12n (x, 0, z) 16r (x/2,−x/2 + 1, z) Cn

(0, x, z) 8n (0, x, z) −2Cn

12o (x, 2x, z) 16r (x/2, 3x/2, z) Co

8o (−x, 0, z) −2Co

τ12(c
′, c′) 12n (x, 0, z) 8l1 (x/2,−x/2 + 1, z) −Cn

C222 (21) (x, x, z) 8l2 (x/2, x/2, z) Cn

c′ = cei5π/6/
√

3 (0, x, z) 8l3 (−x, 0, z) 0

12o (x, 2x, z) 8l1 (x/2, 3x/2, z) −Co

(−x, x, z) 8l2 (2x,−x, z) Co

(−2x,−x, z) 8l3 (3x/2, 1/2, z) 0

τ12(c
′,−c′) 12n (x, 0, z) 8f1 (x/2,−x/2 + 1, z) Cn

Cmm2 (35) (0, x, z) 4e1 (0, x, z) −2Cn

c′ = cei5π/6/
√

3 (x, 0,−z) 8f2 (x/2,−x/2 + 1,−z) −Cn

(0,−x,−z) 4e2 (0,−x,−z) 2Cn

12o (x, 2x, z) 8f1 (x/2, 3x/2, z) Co

(−2x,−x, z) 4d1 (3x/2, 1/2, z) −2Co

(−x,−2x,−z) 8f2 (2x, x,−z) −Co

(−2x,−x,−z) 4d2 (3x/2, 1/2,−z) 2Co

Table I illustrates which atoms displacements and magnetic moments order-
ing may be associated with order–disorder type phase transitions. They should
fulfil the condition of having the same active representation. As example, the
displacements of atoms and magnetic moments orderings at different positions oc-
cupied in AB5 deuterides, allowed by the τ4 IR are presented in Table IV. The
choice of this representation is given for comparison with experimental data pre-
sented in the paper of Latroche et al. [11]. The values of position parameters are
taken from [11]. The detailed description of displacements and magnetic orderings
of all possible cases is too much space consuming. For each case it may be fined
by using the MODY program [4].

5. The experiment and theory

In the work [11] the deuterides of three intermetallic compounds LaNi5+x

(x = 0, 0.2, 0.4) have been prepared and analysed by neutron powder diffraction
at two different deuterium concentrations. Three different structural models were
tested for the description of the deuterides.

— The first one keeps the cell and symmetry of the intermetallic compound
P6/mmm. The deuterium atoms are distributed over 4 different crystallo-
graphic Wyckoff sites (orbits).

— The second model corresponds to the description in P6mm. The four D
orbits of the P6/mmm model split into seven ones.
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TABLE IV
Displacements of atoms and magnetic orderings at different positions of
P6/mmm allowed by the 4 IR and k = (0, 0, 0).
Atom Orbit Positions Magnetic ordering Displacement

ordering

La 1a (0,0,0) 1: (0.000 0.000 0.000) – Ra1=(0 0 B)

Ni 2c 1: (0.333 0.667 0.000) – Rc1=(0 0 B)=

(1/3,2/3,0) 2: (0.667 0.333 0.000) Rc2

3g 1: (0.500 0.000 0.500) – Rg1=(0 0 B)=

(1/2, 0,1/2) 2: (0.500 0.500 0.500) Rg2=Rg3

3: (0.000 0.500 0.500)

6l 1: (0.200 0.400 0.000) Ml1=(A 0 0)= Rl1=(0 0 B)=

(x, 2x, 0) 2: (0.800 0.200 0.000) – Ml4 Rl2=Rl3=Rl4 =

x = 0.2 3: (0.600 0.800 0.000) Ml2=(A A 0)= Rl5=Rl6

4: (0.800 0.600 0.000) –Ml5

5: (0.200 0.800 0.000) Ml3=(0 A 0)=

6: (0.400 0.200 0.000) –Ml6

2e(0, 0, z) 1: (0.000 0.000 0.120) – Re1=(0 0 B)=

z = 0.12 2: (0.000 0.000 0.880) Re2

D 4h 1: (0.333 0.667 0.360) – Rh1=(0 0 B)=

(1/3,2/3,z) 2: (0.667 0.333 0.360) Rh2=Rh3=Rh4

z = 0.36 3: (0.667 0.333 0.640)

4: (0.333 0.667 0.640)

6m 1: (0.150 0.300 0.500) Mm1=(A 0 0)= Rm1=(0 0 B)=

(x = 0.15, 2: (0.850 0.150 0.500) –Mm4 Rm2=Rm3=Rm4=

2x, z = 0.5) 3: (0.700 0.850 0.500) Mm2=(A A 0)= Rm5=Rm6

4: (0.850 0.700 0.500) –Mm5

5: (0.150 0.850 0.500) Mm3=(0 A 0)=

6: (0.300 0.150 0.500) –Mm6

12n 1: (0.460 0.000 0.120) Mn1=(A 2A 0 )= (wer 1):

(x = 0.46, 2: (0.460 0.460 0.120) –Mn4=Mn9=– Mn12 Rn′1=(B 0 0)=

0, z = 0.12) 3: (0.000 0.460 0.120) Mn2=(–A A 0)= –Rn′4=–Rn′9=Rn′12
4: (0.540 0.000 0.120) –Mn5=–Mn7=Mn10 Rn′2=(B B 0)=

5: (0.540 0.540 0.120) Mn3=(–2A –A 0)= –Rn′5=Rn′7=– Rn′10
6: (0.000 0.540 0.120) –Mn6=–Mn8=Mn11 Rn′3=(0 B 0)=

7: (0.540 0.540 0.880) –Rn′6=Rn′8=–Rn′11
8: (0.000 0.540 0.880)

9: (0.460 0.000 0.880) (wer 2):

10: (0.460 0.460 0.880) Rn1=(0 0 E)=

11: (0.000 0.460 0.880) Rn2=Rn3=

12: (0.540 0.000 0.880) . . . =Rn12

12o 1: (0.200 0.400 0.350) Mo1=(A 0 0)= (wer 1):

(x = 0.2, 2x, 2: (0.800 0.200 0.350) –Mo4=– Mo9=Mo12 Ro1=(B 2B 0)=

z = 0.35) 3: (0.600 0.800 0.350) Mo2=(A A 0)= –Ro4=Ro9=–Ro12

4: (0.800 0.600 0.350) –Mo5 =Mo7=–Mo10 Ro2=(–B B 0)=

5: (0.200 0.800 0.350) Mo3=(0 A 0)= –Ro5=–Ro7=Ro10

6: (0.400 0.200 0.350) –Mo6=Mo8=–Mo11 Ro3=(–2B –B 0)=

7: (0.800 0.200 0.650) –Ro6=–Ro8=Ro11

8: (0.600 0.800 0.650)

9: (0.800 0.600 0.650) (wer 2):

10: (0.200 0.800 0.650) Ro′1=(0 0 E)=

11: (0.400 0.200 0.650) Ro′2= Ro′3=
12: (0.200 0.400 0.650) . . .=Ro′12
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— The third model corresponds to a cell twice larger obtained from a doubling
of the z-axis in space group P63mc. The four D sites of the original cell split
into 12 different structural positions.

The analysis of all possible structures following from P6/mmm parent group, with
invariable lattice (k = 0,0,0) was presented in the previous Section. It has been
shown that structure with P6mm symmetry group follows according to τ4 IR. An-
other possible structure suggested in work [11], with the P63mc symmetry space
group, requires double cell along the z-axis in comparison with initial P6/mmm.
In the symmetry analysis it corresponds to IRs belonging to k = (0, 0, 1/2). As
follows from the calculations, the structure with such group is not allowed in-
dependently of our parent structure. It must be getting in two steps. At first
the structure P63/mmc should appear following from P6/mmm by τ5 IR and
k = (0, 0, 1/2), and next — as the result of transition from P63/mmc according
to τ4 IR and k = (0, 0, 0) — P63mc structure may be realised.

Fig. 2. The ways of structural phase transitions indicated in the experiment [11], al-

lowed by the symmetry.

Atoms La (position 1a) and Ni (positions 2c, 3g, 6l, 2e) in new suggested
subgroups (which result from the experiment and the symmetry considerations)
are splitted like we see in Table V.

TABLE V

Positions of atoms La and Ni in new suggested subgroups.

P6/mmm P63mc P6mm

(191) (186) (183)

La 1a (0, 0, 0) La 2a (0, 0, z) La 1a (0, 0, z)

Ni 2c (1/3, 2/3, 0) Ni 2b1 (1/3, 2/3, 0) Ni 2b (1/3, 2/3, z)

Ni 2b2 (1/3, 2/3, 1/2)

Ni 3g (1/2, 0, 1/2) Ni 6c (1/2, 0, 1/4) Ni 3c (1/2, 0, z)

Ni 6l (x, 2x, 0) Ni 6c1 (x, 2x, 0) Ni 6e (x, 2x, z)

Ni 6c2 (x, 2x, 1/2)

Ni 2e (0, 0, z) Ni 2a1 (0, 0, z/2) Ni 1a1 (0, 0, z)

Ni 2a2 (0, 0, −z/2) Ni 1a2 (0, 0, −z)

Comparison of the splitting and occupation sites given by the experiment
for the saturated deuterides with the results of the symmetry analysis method are
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quoted below, in Table VI (results for P6mm space group), and in Table VII (for
P63mc).

TABLE VI

Splittings and sites occupations given in the experiment [11], and

calculated by the symmetry analysis (results for P6mm space

group).

Experimental data The symmetry analysis

method (Table III)

La0.95Ni5.11D5.45 Model Parent space Splitting, ∆P

P6mm group P6mm

P6/mmm

n = 0 2b1 4h 2b1 − Ch

n = 0.56 2b2 2b2 + Ch

n = 1.96 6e 6m 6e Cm = 0

n = 2.48 6d1 12n 6d1 + Cn

n = 0 6d2 6d2 − Cn

n = 0 6e′1 12o 6e1 − Co

n = 0.59 6e′2 6e2 + Co

n — occupancy parameters are given in atom per cell

TABLE VII
Splittings and sites occupations given in the experiment [11], and calculated
by the symmetry analysis (results for P63mc space group).

Experimental data The symmetry analysis method

LaNi5D6.5 La0.97Ni5.06D5.9 Model Parent space Splitting, ∆P Splitting

P63mc group P63/mmc ∆P

P6/mmm P63mc

n = 0 n = 0 2b1 4f +Ch 2b1 −Dh

n = 0 n = 0 2b2 4h 2b2 +Dh

n = 1.28 n = 0.88 2b3 4f′ −Ch 2b′1 +D′
h

n = 0.29 n = 0.42 2b4 2b′2 −D′h
n = 3.2 n = 3.6 6c1 6m 12k (1-6) +Cm 6c1 +Dm

n = 0.7 n = 1.04 6c2 (7-12) −Cm 6c2 −Dm

n = 5.36 n = 5.26 12d1 12n 24l (1-6) +Cn 12d1 +Dn

(7-12) +Cn

n = 0 n = 0 12d2 (13-18) −Cn 12d2 −Dn

(19-24) −Cn

n = 0 n = 0 6c′1 12k (1-6) −Co 6c1 +Do

n = 0 n = 0 6c′2 12o (7-12) −Co 6c2 −Do

n = 0 n = 0.38 6c′3 12k′ (13-18) +Co 6c3 −D′′
o

n = 2.3 n = 0.79 6c′4 (19-24) +Co 6c4 +D′′
o

n — occupancy parameters are given in atom per cell, numbering of atoms according to MODY
program

As may be seen, it is possible to choose such parameters for calculated site
occupation changes ∆P , which follow to good agreement with experimental data.
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The displacements of atoms from initial positions (in the parent, high symmetry
phase), calculated by the symmetry analysis method, following to the new positions
in the final lower symmetry phase occur, in general, in good agreement with the
positions indicated by experimental data given in [11]. The difference appears
only at positions 6m occupied by D atoms, for which from the symmetry analysis
follows the possibility of appearing of the displacements only along the z axis,
while the experimental data indicates the displacements along the x axis with z

component fixed in the refinement. Because the displacements of atoms followed
by introducing the hydrogen are small, the differences which appear as the result
of structure deformation in the diffraction pattern are small. Thus more than one
model of structure deformation may give the same result of data refinement. In
such situation the symmetry analysis may help to make the choice, which model
from symmetry point of view seems to be more probable.

6. Conclusions

Based on our analysis we can prove that transition of the parent space group
P6/mmm to P6mm structure types observed experimentally is possible using
the symmetry analysis method k = (0, 0, 0) and τ4 IR. The discussion of phase
transition from P63/mmc to P63mc structure indicate two steps required by the
symmetry restrictions: from P6/mmm, τ5 IR and k = (0, 0, 1/2) to the structure
P63/mmc, and next — from P63/mmc, τ4 IR and k = (0, 0, 0) to the P63mc.
Results of the experimental data and results of theory show the similar hydrogen
ordering. The results presented in this work, calculated for all positions and all
allowed irreducible representations can be applied to interpretation of experimental
investigations of order–disorder phase transitions not only for AB5 hydrates, but
also in many other compounds with P6/mmm parent symmetry group.
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