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For the Kittel–Shore–Kac interspin coupling K/N between N Ising spins

the ferromagnetic phase transition in specific heat vs. T plot has appeared in

literature as a purely mathematical phenomenon, via the exact calculation

of the sum of states Z(T ) and subsequent differentiations with respect to

temperature T . Physical nature of the transition remains in such derivation

invisible. As it is expected to be related to the interaction/temperature com-

petition in populating energy levels of the system, in this paper we construct

the density of energy states D(E) (or energy spectrum) of such systems, both

for the ferromagnetic (K > 0) and antiferromagnetic (K < 0) coupling be-

tween spins. This allows one to see the essence of the difference between

these systems as related to the discrete vs. quasi-continuous shape of the

spectra at low energy states.

PACS numbers: 75.50.Kj, 65.40.–b

1. Introduction

A system of N spins S = 1/2 coupled identically to each other is interest-
ing because it can be and has been solved exactly in term of statistical physics
[1–4]. Kac [4] has derived the partition function for the system of the Ising (or
classical) spins coupled ferromagnetically (F) and using the saddle point method
has found its free energy in the thermodynamic limit N → ∞. It leads to the
mean-field type of phase transition for magnetization of such system. Kittel and
Shore [1] have shown that also for the system of vector spins S = 1/2 there is such
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a phase transition, although it develops rather slowly for increasing N . (From
now on we shall call systems of spins coupled identically — the KSK systems.)
Al-Wahsh et al. [2] performed such a task for the KSK system of spins coupled
antiferromagnetically (AF). Global structure of the energy spectrum of the vector
spin systems has been asserted by van der Sijs in group theory terms [3].

From the point of view of physical intuition the KSK model has serious de-
ficiencies. It is dimension independent, while just dimensionality is essential for
the critical indices of phase transitions. Besides, in order to reach the thermody-
namic limit one has to take the interspin coupling to be of the form K/N , which
is therefore the system-size-dependent coupling. These shortcomings of the model
result in some unphysical predictions — e.g. the specific heat at T → 0 does not
go to zero. Nevertheless, being fully soluble, the model deserves attention — it
allows one to test approximate methods of calculation for more realistic systems.
Besides, the K/N coupling is in a way the long-range interaction, which makes
the system interesting even more.

To perform the calculations of the sum of states Z one usually has to apply
and rely on sophisticated mathematical methods. This complexity is somewhat
obscuring the physical mechanism responsible for the temperature behavior of
magnetic and thermal properties of such systems. One knows that it is the inter-
play between the coupling-driven ordering tendency and the disordering influence
of temperature, which is responsible for the physical behavior of such systems.
Therefore, it seems proper to find a method allowing one to set the anatomy of
this competition in the appropriate scenery — in the space of energy levels and
thus energy spectra D(E) of such systems.

In this work we show that one can use the results of calculations given in [2] to
derive for the Ising spins in a closed form the explicit form of the energy spectrum
(density of states) for the KSK coupling between spins, at least at the absence of
the external magnetic field. Some features of the specific heat vs. temperature
plot for such a model magnet can be clearly explained in terms of the spectrum.

2. Energy spectrum D(E)

We shall follow the notation used in [2]. The energy levels for the system of
N Ising spins S = 1/2 can be written as follows (for simplicity we shall deal here
with even N):

EL = (I/4)[L− (N − 2L)(N − 2L− 1)/2], L = 0, 1 . . . N, (1)
where the variable L — the number of spins “inverted” with respect to the re-
maining N − L spins — may be called a “quantum number” of this system. I is
the interspin coupling (called also the exchange integral).

We shall remember in the following that in the F-case I > 0, while in the
AF-case I < 0. Figure 1 shows the dependence of E on L. Extreme occurs at
L = N/2. Let us note that total number of different energy levels is N + 1 and
the energy range is EN/2 − E0 = IN2/8.
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Fig. 1. Energy in the units I vs. the “quantum number” 0 < L < N of the system of

N spins coupled identically to each other with the “exchange integral” I, see Eq. (1).

Antiferromagnetic coupling: I < 0. Ferromagnetic coupling: I > 0.

Equation (1) can be treated as the quadratic equation for the unknown
variable L. We can easily solve it to represent the dependence of L on the energy E:

L± = [N ± (N − 8E/I)1/2]/2. (2)
Degeneracy of the L-th level is just the number of ways in which one can

turn L spins up out of N spins down, i.e. the Newton binomial coefficient

dL = B(N, L) =
N !

(N − L)!L!
. (3)

It reflects the fact that the total number of different spin configurations for N spins
is (1 + 1)N . Let us note that in the AF case for even N the lowest energy level is
at L = N/2, its degeneracy being N !/[(N/2)!]2. Having that, we can immediately
write the formula for the density of states (energy spectrum) D(E):

D(E) =
∑

L

dLδ(E − EL) =
∑

L6=N/2

B(N, L)
|L−N/2|

×{δ[L− L+(E)] + δ[L− L−(E)]}+ dN/2δ(E − EN/2), (4)
where the formula δ[x − f(y)] =

∑
i δ[yi − f−1(x)]/|f ′(yi)|, yi being the roots of

the equation f(y) = x, has been used. As we can see here the energy spectrum
is essentially a series of δ-function peaks at discrete values of the energy given by
Eq. (1) — not a very deep insight into the problem yet.

3. Profile function P (E) for the KSK coupling K/N

Now to make the system more tractable we introduce the KSK form of the
coupling [1, 4]:

I = K/N, (5)
where K = KF > 0 means ferromagnetic coupling (F), while K = KAF < 0 is for
the antiferromagnetic one (AF). Let us note that now the total coupling of a given
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spin to all its neighbors is finite and goes to the energy value K for N growing
indefinitely. One obtains instead of Eq. (2):

L±(E) = [N ±
√

N(1− 8E/K)]/2. (6)
These functions for both cases are shown in Fig. 2. Let us note that the total span
of the energy range is now N |K|/8.

Fig. 2. The L vs. E plots for N = 20 spins, Eq. (2), for the Kac interspin coupling

I = K/N . Antiferromagnetic coupling KAF < 0 (a), ferromagnetic: KF > 0 (b).

Let us now determine the limiting form of dL at large N . It is sufficient to
use the well known Stirling approximation for the factorial

ln N ! = (N + 1/2) ln N −N + ln
√

2π. (7)
Instead of L we introduce into Eq. (7) the variable m such that L = N/2−m and
expand the result to second order in the “small” m. We receive an approximate
formula for the Newton binomial coefficient B(N, L):

ln(B(N,N/2−m)) = ln(B(N, N/2))− 2m2(1− 1/N)/N. (8)
It follows:

B(N, L) = B(N, N/2) exp(−(8α/N)(N/2− L)2), (9)
where α = (1− 1/N)/4.

This approximate formula, although formally valid only for m ¿ N , works
already for N = 20 amazingly well, at least to pictorial accuracy, in the whole
range 0 < L < N , see Fig. 3. Only at the limits of this range the values of the
Gaussian are too small, but it should play no role in possible integrations involving
this function.

The last step is to insert into this formula the L(E) function (6). After a
simple manipulation one arrives for large N at the continuous “profile” function
P (E) of the energy spectrum given by Eq. (4)

B(N, L)
|N/2− L|

∼= C
exp(αE/K)√

1− 8E/K
≡ P (E). (10)

The energy spectrum can therefore be written as
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Fig. 3. Points — the Pascal–Newton binomial coefficients B(N, L), Eq. (3); line — the

corresponding Gauss curve, Eq. (9), for N = 20, 0 < L < N .

Fig. 4. Energy spectrum for the KSK ferromagnet, N = 59. Logarithmic scale has

been used to emphasize the rapid increase in the amplitude of subsequent D(E) spikes

for growing E, while the horizontal separation between the lowest levels is finite, of the

order KF for any N .

D(E) = P (E)
N/2∑

L=0

{δ[L− L+(E)] + δ[L− L−(E)]}. (11)

The constant C in the P (E) follows from the normalization condition
∫

D(E)dE =
2N ; in the present context it is of secondary importance.

In this way we have arrived at the form of the energy spectrum we seek. The
profile P (E) can sometimes be treated as a continuous replica of the spectrum.
Actually, it only provides the degeneracy weights to the δ-functions in Eq. (11),
representing the actual energy levels. Let us note that P (E) near E = K/8 shows
the x−1/2 singularity, which is integrable.

One should emphasize that the distribution of energy levels along the energy
axis is highly non-uniform. For the F-case the distances between the energy levels
close to the ground state are finite, of the order KF for any N , while the degeneracy
given by the P (E) grows exponentially with increasing E, see Fig. 4. This is why
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in order to evaluate the partition function for ferromagnets one must meticulously
evaluate the relevant sums over discrete energy levels, as it has been done by
Kac [4]; it is not allowed to substitute the sums involving D(E) by integrations.

Fig. 5. Energy spectrum for the KSK antiferromagnet, KAF < 0, in the vicinity and

just above the ground state energy E0, for N = 59. Continuous line shows the profile

function P (E), Eq. (10), of the spectrum. Let us note that the (horizontal) separa-

tion between the energy levels becomes smaller — the density of levels declines — for

E → Emin.

Fig. 6. Energy spectra, N = 59, assuming KF = −KAF = K, which results in a mirror

symmetry of both spectra. For evaluation of the sum of states the F -spectrum has to

be treated as a sequence of discrete spikes, while the AF spectrum can in some cases be

substituted by the continuous function P (E), see right plot.

In the AF case for N → ∞ the distances between lowest energy levels near
the ground state tend to 0, degeneracies of these levels approach each other, see
Fig. 5, and one can sometimes substitute the L-sums by the dE integrations with
the profile function P (E). True, at the high energy the levels are again discrete,
but as the relevant degeneracy weights also decline for growing E, the integration
is often a right method.
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Both spectra F and AF are shown in Fig. 6 for some finite N and in the
energy ranges close to E = K/8. As we can see, if the coupling is taken to be
the same on the absolute value for both cases, they are symmetric with respect
to each other. For N → ∞ the lowest energy level in the F-case is (1 − N)KF

and goes to minus infinity, while the highest one is KF/8. In the case of the AF
coupling the lowest energy level is KAF/8 and the spectrum exponentially declines
with E →∞.

4. Thermodynamic functions

Let us look at the thermodynamic consequences of the energy spectrum. In
Eq. (11) the function P (E) in front of the sum provides a continuous envelope for
the spectrum, but the distribution of relevant energy points along the energy axis
is both discrete and non-uniform.

The last fact is of primary importance, at least for the ferromagnetic spin
ordering. Let us consider it in some detail. The distance between lowest energy
levels is here finite for any N , of the order KF. Such a finite separation between
the ground state energy and higher energy levels in the energy spectrum is in fact
essential for many physical systems, because it usually secures the accord with the
Nernst theorem (see e.g. [5]) for the specific heat cV (T ):

CV (T ) −→
T→0

0. (12)

However, on inspecting the Kac results [4] following his evaluation of the partition
function one finds out that the Ising KSK ferromagnet is in this temperature limit
unphysical — the specific heat tends in this limit to a constant value. Similar
problems arise within this model for the magnetic properties at low temperatures.
When looking at the energy spectrum we can see no reason for such defects. The
Kac method of evaluating the partition function and free energy seems to be exact,
but it seems that there may be some convergence problems at the low temperature
limit.

The Weiss theory of ferromagnetism, although in principle derivable for the
same model of spins, predicts at low temperatures a reasonable behavior. Ini-
tially postulated by Weiss as an ingenious guess, it can also be derived using the
Gibbs procedure. In this free energy approximation one extracts from the sum
of states Z(T ) (by calculating the extremum with respect to magnetization) the
subsum which is “overwhelmingly large” [6]. Alternatively, one can speak of the
Bragg–Williams treatment of the Ising spins, where the system is considered as a
“chemical” mixture of spins up an down [7]. Paradoxically, the approximation is
in this case more “physical” than the exact theory. The density of states involved
in such “limited” sum of states is not known; presumably it shows essentially lower
degeneracy of the lowest energy states than the exact D(E) shown here.

At elevated temperatures the KSK model rigorously leads to the ferromag-
netic phase transition and we can interpret it in terms of the density of states
D(E). The dramatic growth of the degeneracy level vs. E in the evaluation of the
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sum of states Z(T ) is for increasing temperature T balanced more and more by the
exponentially declining Gibbs factor exp(−E/kBT ). At sufficiently high temper-
atures the system occupies mainly the group of energy levels in the infinitesimal
energy range close to the highest energy level K/8, where the P (E) function shows
a spike, see Fig. 4. It leads to the ferromagnetic phase transition at TC — a spike in
the specific heat — which is important merit of the Kac approach. At temperature
above the TC the internal energy of such Ising ferromagnet is practically constant
and equal to K/8, so its first derivative with respect to temperature cV = 0.

For the KSK antiferromagnet the situation is mathematically different but
physically similar. The distances between the lowest energy levels are of the order
KAF/N , thus the spectrum for N →∞ becomes quasi-continuous. It is therefore
reasonable to evaluate the thermodynamic functions for this case using the contin-
uous form of the energy spectrum (10), see continuous line in Fig. 4, and turning
the relevant sums into integrals. The sum of states is

ZN =
∑

L

B(N, L)
|N/2− L| exp(−βEL)

∼= C

∫ (N−1)KAF

−KAF

exp(αE/K)√
1− 8E/K

exp(−βE)dE

≈ K

8
exp

(
α + βK

8

) ∫ N

0

exp
(
−α+βK

8 x
)

√
x

dx

−→
N→∞

√
2πK

4

exp
(

α+βK
8

)
√

α + βK
, (13)

where β = kBT and here K ≡ KAF. The energy is EN = −∂ZN/∂β/ZN . The
specific heat per one spin cV = (1/N)∂EN/∂T is

CV ≈ 1
2N

K

(αT + K)2
−→

N→∞
0. (14)

Thus cV (T ) = 0 for the KSK antiferromagnet at all temperatures, as it has been
derived exactly within the independent theory [2]. Indirectly this agreement proves
that the continuous profile function P (E) can be treated as the density of states
DAF(E) for the KSK antiferromagnet. Physically, it is related to the fact that in
the AF case for N →∞ the chance of promotion of the system to a higher energy
effectively declines to zero, because the ratio of degeneracy of a higher energy level
to the degeneracy of a lower one becomes in this limit infinitesimally small, see
also discussion in Ref. [2].

5. Conclusions

1. The density of states DAF(E) for the KSK antiferromagnet at N → ∞ is
given by the quasi-continuous profile function P (E). It shows in the energy
range (KAF/8,∞) practically an exponential decline vs. E. The summation
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over L in the sum of states Z and other thermodynamic functions can be in
this (AF) case substituted by the dE integration.

2. The discrete nature of the density of states DF(E) is essential for the right
calculation of the thermodynamic functions for ferromagnets at elevated and
high temperatures — one has to evaluate the relevant sums

∑
L . . . involving

the δ[L− L±(E)] spikes, not the above mentioned integral.

3. The KSK model in case of ferromagnetic coupling of the Ising spins becomes
at T → 0 physically doubtful, while the mean-field model of Weiss, being
formally an approximation within the KSK model, displays a physically ac-
ceptable behavior in this limit.
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