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The experimental results on transport, noise, and dissipation of electric
power for voltage-biased Si-doped GaN channels are compared with those of
Monte Carlo simulation. The measured dissipated power shows a stronger
hot-phonon effect than the simulated one. On the other hand, the exper-
imental results on the electron drift velocity at high electric fields show a
weaker hot-phonon effect as compared with the simulated one. The misfit
can be reduced if a conversion of the friction-active nonequilibrium longitu-
dinal optical phonons into the friction-passive longitudinal optical phonons
is considered.

PACS numbers: 72.20.Ht, 72.70.4m, 72.80.Ey

1. Introduction

Emission of longitudinal optical (LO) phonons by hot electrons is the main
power dissipation mechanism in GalN at high electric fields. As a result, a large
part of the supplied electric power is transferred to the LO-phonon subsystem,
and the latter is displaced from equilibrium. “Hot phonons” is a short term for
this situation. The accumulated hot phonons cause different effects: introduce
additional friction, reduce the electron drift velocity, slow down electron energy
dissipation [1]. The hot-phonon effects manifest themselves at a high density of
electrons in channels subjected to high electric fields [2]. The hot-phonon problem
is of great interest for microwave high-power field-effect transistors.

Measuring microwave noise of hot electrons is a convenient way for exper-
imental investigation of hot-phonon effects in voltage-biased channels [3]. Com-
plicated disintegration of hot phonons into other vibration modes is usually in-
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terpreted in terms of a single parameter — the lifetime. The noise technique has
provided with the hot-phonon lifetime [3] in an excellent agreement with the value
obtained from time-resolved experiment on the intersubband absorption assisted
by LO phonons [4]. For GaN and GaN-based channels, the lifetime is measured
at different electron temperatures [3, 5|, lattice temperatures [5, 6], and electron
densities [7]. Our goal is to illustrate, through comparison of the experimental re-
sults [8] with those of Monte Carlo simulation [2], that the single-lifetime approach
fails, and the experimental investigation of noise, transport, and power dissipation
can provide with more features of the hot-phonon disintegration in GaN.

2. Results and discussion

Stars in Fig. 1 illustrate the electron velocity estimated from the data on
current, electron density, and channel dimensions (stars [8]) measured at room
temperature for Si-doped GaN channels. The velocity approaches the value of
3 x 107 em/s at electric field 300 kV/em. According to the simulation [2], hot
phonons reduce the velocity (Fig. 1, solid curve). A longer hot-phonon lifetime
causes a lower drift velocity (bullets). At fields above 50 kV /cm, solid line is below
the experimental data (stars) — the simulated hot-phonon effect is stronger than
the experiment shows.
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Fig. 1. Drift velocity against electric field for GaN at electron density of 10'® cm™3:

experiment (stars [8]) and Monte Carlo simulation (lines [2], and bullets).

The simulated dissipated power per electron depends on the mean kinetic
energy of the electrons (curves, Fig. 2). The experimental data (stars [8]) obey
a similar nearly-exponential dependence on the inverse noise temperature. The
activation energy is close to the LO-phonon energy.

The simulation (Fig. 2, solid line) shows a weaker hot-phonon effect than
the experiment (stars). This contradicts with the conclusion obtained from the
analysis of the electron drift velocity (Fig. 1).
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Fig. 2. Dissipated power per electron against reciprocal noise temperature for Si-doped

GaN (stars [8]) and reciprocal mean kinetic energy (lines [2], bullets).
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Fig. 3. Hot-phonon distribution function at 100 kV/cm for GaN at electron density of
10" em ™2,

The contradiction is reduced if LO-phonon—LO-phonon collisions (LO-LO
scattering) are taken into account. The hot-phonon effect on electron drift ve-
locity (the additional friction) results from the nonequilibrium occupancy of the
LO-phonon modes allowed by energy and momentum conservation (Fig. 3). Let
us call them the friction-active LO-phonon modes. The high occupancy of the
friction-active modes causes the strong hot-phonon effect on the electron drift ve-
locity. On the other hand, in the hot-phonon lifetime approach, the hot- phonon
disintegration rate is independent of the shape of their distribution if the total
hot-phonon number remains unchanged. Supposing that the hot-phonon distribu-
tion were wider (washed out by the possible LO-LO scattering neglected during
the simulation), the occupancy of the friction-active modes would reduce. This
would reduce the friction, and a better agreement with the experimental data on

drift velocity would be obtained.
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In conclusion, the experimental data on transport, noise and dissipation

contain information on the rate of conversion of the friction-active LO-phonon

modes into the friction-passive LO-phonon modes.
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