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Spin Conductance of the Quantum Wire

A. Dargys∗
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Spin transport in a semiconducting quantum wire connected to two

spin-unpolarized electron reservoirs is investigated. The spin–orbit interac-

tion is included via the Rashba Hamiltonian which together with the Zeeman

Hamiltonian determines spin-filtering properties of the wire. The spin cur-

rent as a function of the voltage was found to have an oscillatory or growing

character.

PACS numbers: 73.21.La, 73.63.Nm, 85.35.Be, 85.75.–d

1. Introduction

An efficient control of electron and hole spins by electric and magnetic fields
is a central theme in spintronics [1, 2]. In nanodevices that operate in a ballis-
tic transport regime the control can be achieved through structural asymmetry
that can be manipulated by external voltage as demonstrated experimentally in
Refs. [3, 4]. In this report the spin control and filtering properties of the symmet-
ric quantum wire (QWR) that is connected to unpolarized electron reservoirs was
achieved via the spin–orbit interaction and Zeeman effect.

2. QWR model

The k · p Hamiltonian that describes the electron in a wire is (Fig. 1):

H = (p + eA)2/2m∗ + V (x) + HZ + HR ≡ H0 + HR, (1)
where p = (px, py) is the linear momentum and m∗ is the effective mass. The
magnetic induction B‖z was included in the Zeeman Hamiltonian HZ as well
as in the kinetic term where it appears as vector potential in the Landau gauge
A = (0, Bx, 0), B = |B|. The electron can freely propagate only in y direction,
Fig. 1. The voltage between the split gates is assumed to induce the parabolic
lateral confining potential V (x) in the x direction, V (x) = m∗ω2

0x2/2, where ω0 is
the oscillator frequency. The Zeeman and Rashba Hamiltonians are
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HZ =
1
2
g∗µBBσz, (2)

HR =
α

~
[σx(py + eBx)− σypx], (3)

where g∗ is the effective magnetic factor, µB is the Bohr magneton, and α is the
Rashba constant.

Fig. 1. The wire (thick central line) on x−y plane is defined by two split gates (outer

rectangles along the wire) on the 2D electron gas surface. The confining potential that

forms the wire in y-direction is proportional to x2. The magnetic field B is perpendicular

to the plane.

The solution of the Schrödinger equation with the Hamiltonian (1) is sep-
arable with respect to x and y coordinates: Ψ(x, y) = ψ(x) exp(ikyy), where
ψ(x) is the transverse part of the wave function and the exponent describes the
running waves with the wave vectors ky along the wire. Substitution of Ψ(x, y)
into the unperturbed part H0 of (1) yields the Hamiltonian of shifted harmonic
oscillator with the effective oscillator frequency ω =

√
ω2

0 + ω2
c and the shift

x0 = (1 + ω2
0/ω2

c )−2(~ky/eB), where ωc = eB/m∗ is the cyclotron frequency.
The shift is caused by magnetic field and vanishes when B → 0. The eigenenergies
of H0 are

E
(0)
n(±) = ~ω

(
a†nan +

1
2

)
+

ω2
0

ω2

~2k2
y

2m∗ ±
1
2
gµBB, (4)

where a†n and an are the standard raising and lowering operators, a†nan is the
number operator with the eigenvalues n = 0, 1, 2 . . ., and ± signs refer to up
and down spins with respect to B. The first term in (4) describes the discrete
oscillator energies, the second term shows that every discrete level is associated
with a parabolic band, and the last term indicates that in the magnetic field the
parabolic bands are split with respect to up and down spin states. The Hamilto-
nian H0 and its basis served as a starting point in finding the dispersion and spin
properties of the full Hamiltonian (1) with HR included. The calculations have
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shown that a good quantitive description of the lower energy bands of the QWR
is obtained if the truncated Hilbert space characterized by a finite oscillator num-
ber n is used [5, 6]. Combining the diagonal part given by (4) and the coupling
elements 〈n, ν|HR|m, ν′〉, where ν is the spin state with respect to z axis, a large
Hamiltonian matrix was constructed which was then diagonalized or used to find
the exact eigenfunctions numerically.

2.1. Spin conductivity

It is convenient to introduce three characteristic lengths: L0 =
√
~/m∗ω0,

LZ =
√
~/m∗ωc, and LR =

√
~2/2m∗α. The oscillator length L0 gives the spread-

ing range of wave function in the transverse direction. The magnetic length LZ

is equal to the radius of the skipping electron trajectory along the wire at energy
~ωc/2. For parameters of InAs (m∗/m0 = 0.04, α = 10−11 eV m, g∗ = −8) and at
L0 = 31 nm, B = 1 T one finds LZ = 25.6 nm. The Rashba length is LR = 95 nm.

The spin current is defined as a transport of electron spin in a real space.
For an electron occupying a single energy band, the spin current related to spin
projection i = x, y or z can be written as

Is
i =

d〈si〉
dt

=
~
2

∫ EF

0

〈ν|σi|ν〉vν(k)fν(k)dk, (5)

where 〈ν|σi|ν〉 is the average spin in the eigenstate |ν〉 that is to be calculated
from the wire Hamiltonian, vν(k) is the electron velocity along the wire at the
wave vector k and fν(k) is the distribution function, which is assumed equal to
one if the carrier energy is smaller than the Fermi energy EF and zero otherwise.
The interval (0–EF) in the integral (5) can be expressed as a difference between
the electro-chemical potentials µ1 and µ2 in the left and right electron reservoirs
connected to the conductor: EF = µ1 − µ2 = −eV , where V is the voltage ap-
plied between the reservoirs. In accordance with the arguments of Ref. [7], it is
assumed that there is no potential drop in the channel. The potential drop that
is associated with a finite resistance occurs at the connections to the reservoirs,
and V is supposedly divided equally between the two tapered connectors. This
is essential, since the conduction can be calculated after specifying the location
where the potential drop occurs. Then, the spin conductance related to a single
energy subband will be

Gs
i =

Is
i

V
=

e

2π
〈ν(µ)|σi|ν(µ)〉. (6)

The average spin component 〈ν(µ)|σy|ν(µ)〉 in all cases was found to be equal to
zero. This means that independent of the wave vector magnitude the average spin
will be perpendicular to the wire axis. This is associated with the symmetry prop-
erties of the Hamiltonian, which in our case is real. The obtained spin conductance
(6) for a single channel (subband) can be generalized to the multiband case. With
the n-th subband having j local extrema ξ

(j)
n , the total spin conductivity then

becomes the sum over the subbands and extremal points
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Gs
i = Gs

0

∑

n,j

〈νn(µ− ξ(j)
n )|σi|νn(µ− ξ(j)

n )〉Θ(µ− ξ(j)
n )sgn(m∗(j)

n ), (7)

where Gs
0 = e/(2π). The signum function accounts for a type of the extremal point.

It is positive for energy minimum and negative for energy maximum. The Heav-
iside Θ-function takes into account the open channels at a given applied voltage.
Equation (7) is analogous to the quantized electrical conductance [8]. Normally,
with the increase in V the directions of spin in adjacent channels have opposite di-
rections, as a result, the spin conductance, in contrast to the electrical conductance
as we shall see, will have an alternating character.

2.2. Results and discussion

Three parts in Figs. 2–4 show the spectrum, electrical and spin conductance
as a function of the voltage V , or equivalently of µ/~ω0 = eV/~ω0, applied to
reservoirs at three characteristic B magnitudes.

Fig. 2. (a) Spectrum and dependence of (b) electrical and (c) spin conductances on

the wave vector at strong magnetic field: LZ/L0 = 0.35 and LR/L0 = 3. Electrical and

spin normalization constants are G0 = e2/~, Gs
0 = e/(2π).

At high magnetic fields the energy bands are flat, Fig. 2a, while the adjacent
subbands carry opposite spins, which are either parallel or antiparallel to B. The
flatness of the energy subbands can be explained by unperturbed spectrum (4),
where only the second term is responsible for dispersion. In this term the effective
mass m∗ has been replaced by m∗(1 + ω2

c/ω2
0), which is large at high B’s. Ap-

pearance of every new step reflects the switching on of a new mode (conducting
channel), where an extra electron can propagate along the wire. As a result, the
electrical conductance has a stepped character. Since the total spin is equal to
sum of individual spins of all open channels, while the adjacent channels carry
opposite spins, the resulting spin conductance Gs

i consists of nearly equal ampli-
tude pulses whose spins are parallel to z axis, Fig. 2c. The pulse length is equal
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Fig. 3. The same as in Fig. 2 but at intermediate magnetic field: LZ/L0 = 1 and

LR/L0 = 1.

Fig. 4. The same as in Fig. 2 but at weak magnetic field: LZ/L0 = 1000 and LR/L0 = 1.

to energetic distance between the bands that carry opposite spins. In Fig. 2 the
ratio of characteristic lengths is LR/L0 = 3, LZ/L0 = 0.35. The Rashba length
in InAs is LR = 95 nm. Then, at the oscillator quantum ~ω0 = 0.02 meV (or
L0 = 317 nm, the length that roughly defines the current carrying strip width in
Fig. 1) the magnetic induction will be B = 0.054 T. If the characteristic oscillator
length is reduced to L0 = 31.7 nm (~ω0 = 2 meV) then one finds B = 5.4 T.

At intermediate magnetic fields, Fig. 3, the spectrum and spin properties
depend on both the Rashba and Zeeman Hamiltonians. The spin components 〈σx〉
and 〈σz〉 in this case are of a comparable magnitude and the spectrum appears to
be more or less parabolic. The component 〈σz〉 has a pulsed character, with an
abrupt changes of the spin magnitude at the crossings of the Fermi level with every
higher energy subband minima. However, the compensation of the total x spin
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component after switching on of a new subband in this case is not complete. In
addition, due to nonvanishing contribution of the adjacent bands (channels), 〈σx〉
in average grows, which reflects the property that under the action of the Zeeman
and Rashba Hamiltonians the spin is not in one of the pure up- or down-spin states
and the average spin in different bands changes in a different manner vs. ky.

Finally, at zero (or close to zero) magnetic field the Rashba interaction pre-
vails, Fig. 4. The spin splitting of the energy bands in this case is along ky axis
rather than along energy axis as seen in Fig. 4a. In the absence of a magnetic field
one has 〈σy〉n = 〈σz〉n = 0 for all bands, as a result, after the switching of a new
channel the x component of the total spin suffers a discontinuity and the resulting
spin remains nearly parallel to x axis for all values of the voltage over the wire.

In conclusion, the transport of electron spin along the QWR connected to
two unpolarized reservoirs were analyzed as a function of applied voltage. The
total spin current along the wire (or equivalently the spin conductance) was found
to be a complicated function of the voltage. Only at high magnetic fields, when
the Zeeman term predominates and the spin is in a pure ±~/2 state, the total spin
transferred between the reservoirs has a toothed structure with teeth amplitude
~/2. In general, due to interplay between the Rashba and Zeeman interactions,
the average spin as a function of the voltage fluctuates in the plane perpendicular
to the QWR.
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