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We report on the results of our simulations of Γ−X scattering in

GaAs/AlGaAs heterostructures, discussing the importance of the mole frac-

tion, doping density, and lattice and electron temperature in determining the

scattering rates. We consider three systems, a single quantum well (for the

investigation of Γ−X scattering), a double quantum well (to compare the

Γ−X−G and Γ−Γ scattering rates), and an example of a GaAs/AlGaAs

mid-infrared quantum cascade laser. Our simulations suggest that Γ−X

scattering can be significant at room temperature but falls off rapidly at

lower temperatures. One important factor determining the scattering rate

is found to be the energy difference between the Γ - and X-states.

PACS numbers: 72.10.–d, 73.21.Fg, 73.63.Hs

1. Introduction

The working principles of the resonant-tunnelling (or double-barrier) diode
(RTD) structure was predicted by Tsu and Esaki [1] following their pioneering
work on superlattices in the late 1960s and early 1970s. Realisation of the device
in the form of an AlGaAs layer sandwiched between two GaAs regions was achieved
by Chang, et al. [2] soon after. Following the work of Sollner [3] who demonstrated
operation in the terahertz region, research interest escalated and room temperature
operation was achieved in 1985 [4, 5]. Such structures have since been shown to
be both of broad physical and of technological interest (Aleshkin et al. [6]).

Mendez et al. [7] reported on electron resonant tunnelling in Ga0.6Al0.4As–
GaAs–Ga0.6Al0.4As structures via states above the AlGaAs potential barrier and
later confirmed that these resonances arose from confined X-states in the Brillouin
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zone [8]. The importance of such scattering processes in explaining experimental
data was confirmed theoretically in the many-band pseudo-potential model calcu-
lations of Marsh [9] and also by Liu [10].

The quantum cascade laser (QCL) is an electrically pumped semiconductor
laser that emits in the mid-infrared region of the electromagnetic spectrum and
shares many features with RTDs, the most notable being both are semiconductor
heterostructure devices. Unlike conventional semiconductor injector lasers that
make use of electron–hole recombination, QCLs are unipolar devices that make
use of intersubband transitions to generate electromagnetic radiation [11–19].

The first experimental realisation of a QCL was based on an InGaAs/InAlAs
heterostructure material system lattice matched to an InP substrate [11]. This
system has proven popular and an extensive research effort has resulted in a range
of devices that operate over a wide range of wavelengths and temperatures [12, 13].
However, since QCLs are based upon intersubband transitions, it follows that their
operation should be independent of the specific semiconductor material system
used [14, 15]. Consequently, research was undertaken on materials other than
InGaAs/InAlAs, and resulted in the demonstration in 1998 by Sirtori et al. [16]
of a device based upon GaAs/AlGaAs grown on a GaAs substrate. This material
system has attracted much attention recently for a variety of reasons [17–23]:
(i) AlGaAs semiconductors are the most technologically well developed of the
compound semiconductors; (ii) The GaAs substrate is mechanically more robust
than InP making the manufacture of devices easier; (iii) GaAs and AlAs have
approximately identical lattice constants, so strain at the interface is minimised;
(iv) The possibility of new low-loss AlGaAs wave guide designs; (v) The extension
of the operating region to the far infrared.

Although GaAs/AlGaAs QCLs have performed well at low temperatures,
their operation at room temperature has been more difficult to achieve. One
suggestion to extend the working temperature was to increase the Al content of
the barrier regions, since the higher Al content increases the band offset between
the GaAs well and the AlGaAs barrier, thus improving electron confinement [18].
Subsequently, Page et al. [18] demonstrated a QCL based on an increased Al
content, from 33% in the original design [16] to 45%, reporting a significant increase
in the operating temperature.

Because AlxGa1−xAs is an indirect band gap semiconductor for x ≥ 45%,
it follows that the conduction band minimum in the barriers is at the X point
of the Brillouin zone [24, 25] and it becomes important to understand the role of
intervalley or Γ−X scattering when determining the performance of these GaAs
based QCLs [26].

Experimental results for the importance or otherwise of Γ−X scattering
seem confusing: Some authors claim that Γ−X scattering can be appreciable,
for example inhibiting lasing in AlGaAs QCLs depending on the relative ener-
gies of the X and Γ states [27], and strongly influences the I−V characteristics
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(depending on the barrier thickness) [28, 29]. Other authors, however, claim that
intervalley scattering is negligible [30] and plays no significant role in the behaviour
of QCLs.

It is the purpose of this paper to provide a systematic study of Γ−X scatter-
ing in GaAs/AlxGa1−xAs heterostructures, using a single quantum well to deter-
mine the importance of well width, molar concentration x, (lattice) temperature
Tlatt, and doping density Nd (considering the importance of the Pauli blocking).
We also consider the application of an electric field and its effect on the scat-
tering rate. After this we consider a double quantum well to determine the role
of intervalley scattering in the tunnelling through single layer heterostructures,
i.e. Γ−X−Γ scattering compared with Γ−Γ scattering. Finally, we estimate the
relative importance of intervalley scattering in a realistic QCL device.

2. Modelling

We model intervalley scattering according to the work of Raichev [31], who
developed a model of phonon-assisted Γ−X transfer in periodic GaAs/AlAs (001)-
grown heterostructures. The analysis was based on the envelope-function approx-
imation for electrons and an improved description of the phonon spectrum, taking
into account the considerable difference in the atomic masses of Ga and Al. In
this model there are two principal mechanisms for intervalley scattering: interlayer
Γ−X scattering and Γ−X mixing.

We follow Raichev’s notation and consider a GaAs/AlGaAs superlattice,
made up of a GaAs well of width d1 and an AlxGa1−xAs barrier of width d2, and
find the scattering rates for Γ−X scattering (using the notation of Raichev) from
the Γ -state n to the X-states n′ as

Wn =
1

Nd(n)
1

(2π)4
1
d

∑

n′

∑
m

HΓX
m,n′(m)NIΓX

n,n′(∆ε), (1)

where Nd(n) is the Γ sheet density of the state n (we are not considering self-
consistent solutions yet), d = d1 +d2 is the length of the unit cell and m labels the
region (either well or barrier). The terms H in Eq. (1) involve overlap integrals
between the Γ - and X-state wave functions, GΓ

n (z) and GX
n′(z) respectively, and

the phonon modes
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where the range of integration is taken over the well (m = 1) or barrier (m = 2)
region. In Eq. (2) Dm is the deformation potential constant, ρm is the density,
and ωm is the phonon (angular) frequency for the material. The term N contains
information about the effective number of phonons, N = 1

exp(β~ωm)−1 + 1
2 ∓ 1

2 ,
and where ± refers to the emission and absorption of a phonon, respectively, with
β = 1/kBT . Finally, IΓX

n,n′(∆ε) is given as
∫

k

∫
d2kfΓ

n (k)
∫

k′

∫
d2k′δ[εΓ

n (k)− εX
n′(k

′) + ∆ε],
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with ∆ε = ∓~ωm. In Eqs. (1) and (2) X refers to Xx, and for this exploratory work
we ignore the contributions from the Xx, Xy states, and take the Γ distribution
function to be the usual Fermi–Dirac distribution. As we will consider carrier
densities in typical devices of order 1011 cm−2, we initially ignore the Pauli blocking
in the final state but do consider its order of magnitude effects briefly to confirm
or otherwise this assumption.

We find that we can write the expression for Γ−X mixing as

Wn =
1

Nd(n)
2πα2

~d2

1
(2π)2

∑

n′

∣∣∣CΓXz

n,n′

∣∣∣
2

J, (3)

where α is a single parameter that describes mixing between the envelope
functions at the interfaces. CΓX

n,n′ involves the Γ and Xz envelope functions at the

interfaces and is given as GΓ
n′(−d1)G

X∗
z

n′ (−d1) − GΓ
n′(0)GX∗

z

n′ (0) and the term J is
determined from the result∫

k

∫
d2kfΓ

n (k)δ[εΓ
n (k)− εXz

n′ (k)].

Heterostructures consist of alternate layers of dissimilar material so that the
mass of the carrier is different in these layers and to solve the Schrödinger equa-
tion we follow Raichev’s [31] suggestion that it is sufficient to adopt the envelope
function approximation [32, 33] for each valley for the first order calculations of
the scattering rates[

−~
2

2
d
dz

(
1

m∗(z)
d
dz

)
+ V (z)

]
ψn(z) = εnψn(z). (4)

In Eq. (4) V (z) is the band discontinuity at the well/barrier interface and the
integer n labels the subbands.

3 Results and discussion

We now present the results of our calculations, using the parameter values
for the Dm and α given by Raichev [31]. Results for the variation of the scattering
rate with the energy separation, ∆ε, between the lowest Γ level and the lowest X

level in a single quantum well are presented in Fig. 1. The data were generated
by considering a single quantum well with well of width d1 and barrier of width
d2, keeping d1 fixed and varying d2. Because of the rapid fall off in scattering
rate with (lattice) temperature, Tlatt, the use of a log scale is appropriate since
otherwise the results for 77 K and 115 K would be difficult to discern.

We consider two ranges of well width: D1 : d1 = 35 Å and 10 Å< d2 <

90 Å and D2 : d1 = 30 Å with 10 Å< d2 < 65 Å. The differences between
the two sets of data show the importance of the localisation of the wave function
in the wells (which determine the overlap integrals) and also suggest that any
theoretical predictions must be interpreted with care, since the differences between
corresponding curves in Fig. 1 can be of the order of a factor three or more in the
calculated scattering rates.
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Fig. 1. Scattering rate versus ∆ε for a single well for lattice temperatures 77 K, 115 K

and 300 K. The dotted curves correspond to the set D1, while the full curves correspond

to the set D2 (see text for explanation). The inset shows the Γ (full line) and X (dashed

line) potential profiles. Let us note the rapid fall off of the scattering rate with energy

and temperature.

From the figure, we have scattering rates ≈ 1011 s−1 for room temperature
that fall off rapidly with energy difference and with temperature to ≈ 109 s−1.
Given that the phonon scattering rates for transitions of interest in realistic devices
are typically found to be ≈ 1012 s−1 (see later), these results show that Γ−X

scattering can be important to take into account for devices operating at room
temperature.

Many calculations do not distinguish between the different materials that
make up the well and boundary regions, and at this point we take advantage of
the notation and investigate these differences. We do this by setting the boundary
region macroscopic parameters (density and phonon frequency) equal to the values
in the well region. We find that there can be differences in the calculated scattering
rates of up to around 20–25%, depending upon the relative sizes of the well and
barrier regions and also how different the macroscopic properties between well
and barrier are. Thus, for the accurate determination of device operation it is
important to consider the effects of both well and barrier materials.

The variation of scattering rate with molar fraction, x, is shown in Fig. 2.
Here we again consider a single quantum well, with the well width d1 taken as 35Å
and the barrier d2 as 20 Å. The total sheet density Nd is taken as 1010 cm−2 and
we also investigate the dependence on the lattice temperature and the case of the
electron temperature different from the lattice temperature [34], Te 6= Tlatt. Again,
the results for the lower temperatures are difficult to discern, which necessitates
the use of a log scale.

The results show significant variation with molar fraction, with the scattering
rate falling off rapidly with x. This variation can be related to the results shown in
Fig. 1: as the molar fraction decreases, so the X potential profile rises compared
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Fig. 2. The variation of the scattering rate with molar fraction, x, and lattice tem-

perature, Tlatt. As the molar fraction gets smaller, the difference between the Γ - and

X-state energies get larger and the scattering rate becomes smaller.

with the Γ potential profile, and the energy of the X-states rise, implying larger
energy differences between the X and Γ -states and so, from Fig. 1, a smaller
scattering rate. Of course, another effect is that as x gets smaller we eventually
have no barrier to contend with, and so no X- state.

A modest variation with the electron temperature, Te, is also noted. As the
electron temperature increases above the lattice temperature, so the scattering
rate increases. The variation of the scattering rate with (lattice) temperature is
investigated more fully in Fig. 3, where the expected fall off with temperature
is apparent (as the temperature decreases, the lattice vibrations become smaller
and so we expect less scattering). As can be noted from the figure, the drop off
in scattering rate with temperature is quite marked, becoming negligible as the
temperature falls below approximately 150 K.

Fig. 3. The variation of the scattering rate with lattice temperature. The fall off below

lattice temperatures of 150 K is quite marked.
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The results for the variation of scattering rate with doping density, Nd, are
presented in Fig. 4. We note an almost linear dependence with doping density for
Tlatt = 300 K, while that for the lower lattice temperatures has more structure.
This variation can be explained by noting that the Fermi energy, εF, depends
upon the doping density, Nd, in the following manner (assuming one bound Γ -
state): εF = εF(0) + kBT ln(1 − exp(−2πBNd)) [4] with εF(0) given as EΓ

n +
2π~2Nd/2mΓ and B = β~2/2mΓ . Hence, for large temperatures the exponential
term becomes small and there is an almost linear dependence on the Fermi energy
with doping density, while for smaller lattice temperatures the dependence is more
complicated. Considering the expression for the scattering rate, it can be shown
that we expect dependence between the energy difference between the Γ -level and
the Fermi energy.

Fig. 4. The variation of the scattering rate with doping density, Nd. The full curves

correspond to ignoring Pauli blocking. As can be noticed, the Pauli blocking is negligible

for the range of doping densities considered.

This linear dependence of scattering rate with doping density will, of course,
eventually drop off, due to the Pauli blocking in the final state. To check this,
we have plotted also in Fig. 4 the results of including Pauli blocking, assuming
the Γ - and X-states are in thermal equilibrium. As can be noted, for the range
of carrier densities considered, the results of including Pauli blocking is negligible
and ignoring it is reasonable.

We can show that we expect the Pauli blocking to be small when the following
inequality is (approximately) satisfied:

2π2

(
~2Nd/2m

)2

kBTe
¿ EX

n′ − EΓ
n , (5)

which is true for the doping densities and temperatures considered.
We now discuss the variation of the scattering rate with applied electric field.

These results are presented in Fig. 5 where we note, for the range of fields con-
sidered, an almost linear relationship between scattering rate and applied field for
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large lattice temperatures, but which breaks down for lower lattice temperatures.
We can explain this variation by noting that, because the widths of the two wells
are different, when we apply an electric field the energies of the Γ - and X-levels
change by different amounts. This means that the difference in energies will vary
and (making use of the results presented in Fig. 1) we know that as this energy
difference varies then so does the scattering rate.

Fig. 5. The variation of the scattering rate with applied electric field. As the field

changes so do the energies of the Γ - and X-states. The changes in energies for the Γ -

and X-states are different because of the different widths of each well.

Before discussing a realistic device, we consider a double well, see Fig. 6.
In this figure we compare the scattering rate from the lowest bound state in the
left hand well to the right hand well, WΓRΓL , with the scattering rates WΓRX and
WXΓL , where X represents all the X-states present. From Fig. 6, we note then
that the two scattering processes are comparable.

Fig. 6. The scattering rate versus energy for a double quantum well. The inset shows

the Γ (full line) and X (dashed line) potential profiles. Let us note the much less rapid

fall off of the scattering rate with energy when compared with Fig. 1.
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The structure found in the XΓL data (and to a lesser extent in the ΓRX

data) can be explained by noting that as the width of the X-well increases, more
X-states are present. The much less rapid fall off with energy compared with the
results for one well may be accounted for by noting that compared to the results
for one well, the Γ -states extend to a greater amount into the barrier region, so
that the overlap integrals are correspondingly larger in this case.

It is noteworthy to point out the importance of including the X-states in
determining the Fermi energy. This may be surprising at first that the X-states
will have such a large effect, but this can be defended by noting that effective mass
of the electron in the X-well is some twelve times larger than in the Γ -well.

Finally, we compare results with the work of Page et al. [18], who reported
on the operation of a GaAs/Al0.45Ga0.55As based QCL at λ ≈ 9 µm for a working
field of 48 kV/cm and lattice temperature of 300 K. Two periods of the device
are shown in Fig. 7, with the Γ -states indicated. Also shown are the X potential
profile and the corresponding X-states. We determine the self-consistent scatter-
ing rates, accounting for all electron–longitudinal–optical phonon and electron–
electron scattering rates as well as an evaluation of the non-equilibrium electron
distribution [34, 35].

Fig. 7. The Γ and X potential profiles with the relevant wave functions used to deter-

mine the scattering rate.

Table I shows the results for our scattering rate determination for W8, W9,
and W10, where Wi is the scattering rate from the range of states Γ11−Γ20 to
the state Γi, representing the transition rate from the left hand period to those
selected states of interest in the right hand period. These states are the upper and
lower laser levels, Γ9 and Γ8, respectively, and a continuum state, Γ10, discussed
by Indjin et al. [36] in their analysis of the device of Page et al. [18]. We note
these scattering rates are of order 0.1−1× 1012 s−1.

To determine an estimate of the contribution from Γ → X scattering we
only consider those Γ and X-states indicated in the figure, and apply the results
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TABLE I

Scattering rates for the range of

states Γ11−Γ20 to the state Γi.

Γi Wi [s−1]

Γ8 5.98× 1011

Γ9 7.95× 1011

Γ10 1.11× 1011

TABLE II

Scattering rates for the state Γi to

the state X5.

Γi Wi [s−1]

Γ8 7.21× 109

Γ9 3.55× 1011

Γ10 2.76× 1012

TABLE III

Scattering rates for the range of

states Γ11−Γ20 to the state Xi.

Xi Wi [s−1]

X1 3.85× 1011

X2 4.31× 1011

X3 2.29× 1011

X4 2.40× 1011

X5 2.85× 1011

for the scattering rate discussed previously. We point out two approximations
that we make: (i) Raichev’s result was derived for a superlattice and strictly
does not apply to the structure designed by Page et al.; (ii) Because the Γ -states
can be appreciable over several quantum wells, we suppose them to belong to an
“effective quantum-well”. Our results are presented in Tables II and III. Table II
shows the results of our calculations for considering the scattering rates from the
Γ -states Γ8, Γ9 and Γ10 to the X-state X5 (this state is expected to have the
largest contribution because of its energy and position with respect to the states
under consideration) for a lattice temperature of 300 K and a doping density of
38× 1010 cm−2.

We note that as the temperature decreases the corresponding scattering rate
falls of drastically, for example for the transition Γ9 → X5, the scattering drops
to 3.76× 105 s−1 for Tlatt = 115 K and 9.50× 100 s−1 for 77 K.
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Finally, Table III shows the results for the scattering rates from the Γ -states
Γ11−20 to the different X-states. The reason for this being these states, although
less spatially closer to each other, they are energetically close. We note that the
relative importance of the two scattering processes can vary quite dramatically
depending upon the transition involved.

Comparing Tables II and III with Table I we see that it could be important
to take into account the effects of Γ−X scattering [26] for the device of Page et al.
under consideration, though we do note these calculations are not self-consistent.

4. Conclusions

Our calculations of inter-valley scattering suggest that Γ−X scattering can
be as fast as acoustic phonon scattering, particularly when the X-states are close
in energy to those originating from the Γ -valley as can happen when the Al con-
centration in the AlGaAs alloy approaches 45%.
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