Proceedings of the Conference "New Materials for Magnetoelectronics -MAG-EL-MAT", Będlewo, May 7–10, 2007

Specific Heat of YbNi₄Si Compound

M. Falkowski^{*}, A. Kowalczyk and T. Toliński

Institute of Molecular Physics, Polish Academy of Sciences Smoluchowskiego 17, 60-179 Poznań Poland

The specific heat of YbNi₄Si has been analyzed considering the electronic contribution and the lattice contributions in frames of the Debye model. Based on the specific heat measurements, the electronic specific heat coefficient $\gamma = 25 \text{ mJ mol}^{-1} \text{ K}^{-2}$ and the Debye temperature $\theta_D = 320 \text{ K}$ were derived. This small value shows that YbNi₄Si cannot be classified as a heavy fermion system. These studies are completed by magnetic susceptibility, X-ray photoemission spectroscopy, and electrical resistivity.

PACS numbers: 82.80.Pv, 65.40.Ba, 75.20.Hr

1. Introduction

The intermediate valence compounds pose one of the most challenging problems of strongly correlated electron systems. Different ingredients contribute to the complexity of these fascinating systems: the presence of strong Kondo interactions, the level structure of the crystal electric field split f-orbitals, a different hybridization between each level and the conduction band, and the eventual coherence effects and magnetic interactions introduced by the periodicity of the Kondo lattice.

A great interest in the Yb-based compounds comes from the fact that Yb can exhibit two valence states related to the nonmagnetic $4f^{14}$ (Yb²⁺) and magnetic $4f^{13}$ (Yb³⁺) electronic configurations. Due to this feature Yb is often treated as a hole counterpart of Ce, which also shows two close in energy, electronic configurations: the magnetic $4f^1(\text{Ce}^{3+})$ and the nonmagnetic $4f^0(\text{Ce}^{4+})$.

In our paper we analyze the heat capacity data of YbNi₄Si. To verify fully the magnetic contribution due to the Yb f states the nonmagnetic reference compound YNi₄Si is also measured.

2. Experimental

The sample preparation was described in detail in Ref. [1]. The room temperature powder X-ray diffraction pattern revealed that the studied YbNi₄Si com-

^{*}corresponding author; e-mail: falkowski@ifmpan.poznan.pl

pound was single-phase. Heat capacity measurements were performed by PPMS commercial device (Quantum Design) in the temperature range of 2–300 K by the relaxation method using the two-tau model.

3. Results and discussion

YbNi₄Si is paramagnetic and its magnetic susceptibility follows the Curie– Weiss law $\chi(T) = C/(T - \theta)$ with $\mu_{\text{eff}} = 4.15\mu_{\text{B}}/\text{f.u.}$ and the paramagnetic Curie temperature $\theta \approx 0$ K [1]. This effective magnetic moment is slightly reduced with respect to the free Yb³⁺ ion (4.54 μ_{B}) and suggests that the valence of the ytterbium ions in YbNi₄Si is close to 3+. The Yb²⁺ and Yb³⁺ peaks observed by X-ray photoemission spectroscopy (XPS) in the valence band region confirm the domination of the Yb³⁺ valence state [1] (Fig. 1).

Fig. 1. Valence band region of the YbNi₄Si compound measured by X-ray photoemission spectroscopy.

The temperature dependence of the electrical resistivity $\rho(T)$ shows the standard Fermi-liquid behavior with T^2 dependence up to about 60 K.

The total specific heat consists of electronic and phonon contributions. The electronic specific heat coefficient γ provides information concerning the conduction band density of states at the Fermi level. Figure 2 shows the temperature dependence of the specific heat for YNi₄Si and YbNi₄Si compounds.

YNi₄Si is nonmagnetic; therefore, $C_p(T)$ can be described by the standard formula:

$$C_p(T) = \gamma T + 9NR \left(\frac{T}{\theta_{\rm D}}\right)^3 \int_0^{\theta_{\rm D}/T} \frac{x^4 \exp(x) \mathrm{d}x}{[\exp(x) - 1]^2} \quad , \tag{1}$$

where the first and the second term correspond to the electronic and the phonon contribution, respectively. N = 6 is the number of the atoms in the formula unit and $x = h\omega/k_{\rm B}T$. From the fit to the experimental points (Fig. 2) we get

Fig. 2. Temperature dependence of the specific heat of $YbNi_4Si$ and YNi_4Si . (Inset) Specific heat of the YNi_4Si compound fitted with Eq. (1) (solid line).

Fig. 3. The specific heat of YbNi₄Si (squares) and YNi₄Si (triangles). Solid line shows the YNi₄Si data after renormalization of the mass in respect to the Yb-based compound.

the Debye temperature $\theta_{\rm D} = 365$ K and the electronic specific heat coefficient $\gamma = 13$ mJ mol⁻¹K⁻². A similar analysis has been carried out for YbNi₄Si yielding $\theta_{\rm D} = 320$ K and $\gamma = 25$ mJ mol⁻¹K⁻², respectively. However, if a significant magnetic contribution is expected for the Yb-based compound then the simple Debye model does not describe the lattice specific heat accurately enough. In the absence of a measurable magnetic part the Debye temperature of YbNi₄Si should be easilly obtained from the data for YNi₄Si by considering a correction to account for the difference between the molar masses of the YbNi₄Si and YNi₄Si compounds. The renormalization ratio [2] is expressed as: M. Falkowski, A. Kowalczyk, T. Toliński

$$\frac{\theta_{\rm D}(R_m X_n Y_p)}{\theta_{\rm D}(R'_m X_n Y_p)} = \left(\frac{m(M_{R'})^{3/2} + n(M_X)^{3/2} + p(M_Y)^{3/2}}{m(M_R)^{3/2} + n(M_X)^{3/2} + p(M_Y)^{3/2}}\right)^{1/3},\tag{2}$$

where M_R , M_X and M_Y are the molar masses of the R, X, and Y atoms, respectively, θ_D is the Debye temperature and can be used to evaluate the lattice contribution of the magnetic compound $R_m X_n Y_p$ by rescaling the data for the nonmagnetic $R'_m X_n Y_p$. reference system.

Figure 3 presents the specific heat of YbNi₄Si (squares) and YNi₄Si (triangles) together with the renormalized data of YNi₄Si (solid line). The Debye temperatures of YbNi₄Si obtained from the direct fit with Eq. (1) and from the renormalization of YNi₄Si are nearly identical, which indicates that the magnetic contribution to the specific heat of YbNi₄Si is very small, therefore we omit its analysis.

4. Conclusions

It has been found that the YbNi₄Si compound does not order magnetically down to 4 K. Nearly in the whole temperature range studied the magnetic susceptibility follows a Curie law with $\mu_{\text{eff}} = 4.15\mu_{\text{B}}/\text{f.u.}$ This effective magnetic moment is close to the value expected for the $4f^{13}$ configuration ($4.54\mu_{\text{B}}$). The Yb²⁺ and Yb³⁺ peaks observed by XPS in the valence band region confirm the domination of the Yb³⁺ valence state. The heat capacity measurements have shown that YbNi₄Si is characterized by $\gamma = 25 \text{ mJ mol}^{-1}\text{K}^{-2}$ and $\theta_{\text{D}} = 320 \text{ K.}$ A mass correction to the nonmagnetic reference sample YNi₄Si indicates that the magnetic contribution to the specific heat of the Yb-based compound is very small.

References

- A. Kowalczyk, M. Falkowski, T. Toliński, G. Chełkowska, Solid State Commun. 139, 5 (2006).
- [2] M. Bouvier, P. Lethuillier, D. Schmitt, Phys. Rev. B 43, 13137 (1991).

644