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Kondo effect in a single-level quantum dot attached to magnetic leads
is studied theoretically by the “poor man’s scaling” and non-equilibrium
Green function methods. From the scaling equations we derive the Kondo
temperature as a function of the model parameters — in particular as a
function of the angle between magnetic moments. Transport characteristics,
i.e. differential conductance and tunnel magnetoresistance associated with
magnetization rotation, were calculated within the non-equilibrium Green
function formalism based on the equation of motion method.
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1. Introduction

Kondo effect in quantum dots attached to metallic leads (electrodes) is cur-
rently a subject of extensive investigations. In most of the relevant works, the
authors dealt with non-magnetic leads, where the Kondo anomaly in differential
conductance is clearly seen below a certain (Kondo) temperature [1-3]. The Kondo
effect was studied by several different theoretical techniques, including the “poor
man’s scaling”, renormalization group, nanoequilibrium Green function technique,
and others. Significantly less attention was paid to the case of ferromagnetic leads.
It was shown recently for collinear configurations of the leads’ magnetic moments
that the electrodes’ ferromagnetism may lead to interesting new phenomena in
the Kondo problem, which are absent in the case of non-magnetic leads [4-6].
The most important one is the suppression of the Kondo anomaly in the parallel
magnetic configuration due to an exchange field generated by the spin dependent
dot—electrodes coupling.
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In this work, we consider the Kondo phenomenon in the case of non-collinear
magnetic moments. Such a configurations was studied in Ref. [7] by the Green

3

functions technique in the infinite U limit, and more recently also by the “poor

man’s scaling” and renormalization group techniques [8, 9].

2. Model

We consider a single-level quantum dot symmetrically coupled to ferromag-
netic electrodes. The magnetic moments of the electrodes are in general non-
collinear [7]. The system is described by the Anderson-like Hamiltonian of the
general form Hy = Hy, + Hr + Hp + Hy. The terms H, (o = L,R) describe
non-interacting electrons in the left and right electrodes, respectively. The term
Hp =Y _eddid, + U(ﬂdeIdl describes the dot, where € is the single-particle
energy of the dot’s level, whereas U is the Coulomb correlation parameter. The
dot’s level €4 includes the Zeeman energy due to external magnetic field BZ, ap-
plied along the dot’s quantization axis. The tunnelling term Ht describes electron
hopping between the dot and electrodes and has the form

Hy =YY" Tarpal sRapods + hoc., (1)
ko Bo

with T,k denoting the tunneling matrix elements, and R, being the relevant
spin rotation matrix (corresponding to the angle ¢, between the quantization axis
on the dot and the local quantization axis in the a-th electrode). Electron spin
projection on the dot’s quantization axis is denoted by o =1 (|), while the spin
projection on the local quantization axis in the electrodes is denoted by 8 = +(—).
The coupling strength is described by I'wz(€) = 27 Y 4 [Taks|?d(€ — €arp) and is
assumed to be energy independent within the energy band extending from —D
to D, Tagle) = Tag = I'Y(1 £ p,), where p,, is the spin polarization of the a-th
electrode. We also define A = > I'? and assume I = I'{ = I'°, p, = pr = p.
In the following we restrict our consideration to the symmetrical situation, i.e. for

—¢r = ¢r = 0/2.
3. “Poor man’s scaling” approach

In order to analyze the Kondo temperature and its dependence on the model
parameters, we applied the “poor man’s scaling” approach to the model Hamil-
tonian describing the quantum dot coupled to non-collinearly polarized magnetic
leads. We assume that the dot is initially singly occupied, i.e. —D < € < pu
and €4 + U > 4, where p (1 = 0) is the chemical level of the electrodes. Fol-
lowing the general rules of the scaling approach [1], we reduce first the cut-off
(band width) by integrating out high-energy fluctuations in the conduction elec-
tron band. This procedure takes into account spin-dependent charge fluctuations
which lead to renormalization of the Hamiltonian parameters, and in particular to
spin splitting de = e? — 6‘11 of the bare dot level €1. The scaling of the Anderson

Hamiltonian is terminated when the cut-off D approaches the dot level, where the
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Fig. 1. The Kondo temperature vs. pcos(6/2), for p= 0.5, ¢! = —0.2 eV, D = 25 eV,

U =15eV (right), and A = 0.1 eV (left). The other parameters as indicated.
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Fig. 2. Differential conductance (top) and tunneling magnetoresistance (bottom) vs.
bias voltage Vi for a few magnetic configurations, and for ¢! = —0.45 eV, U = 5 eV,

I =0.1eV, kgT = 0.001 eV, p=0.2.

perturbation theory breaks down. Then the Schrieffer—Wolff transformation [10] is
applied leading to an effective s—d (Kondo) Hamiltonian. The scaling procedure
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is then continued, but now for the Kondo Hamiltonian. Writing down the scaling
equations and analyzing the corresponding fixed point, one arrives at the following
expression for the Kondo temperature Tx:
~ arctanh(p cos(0/2))
Tilp.0) = Do (-GS ) 2
with jo = (A/7)(U/(|ed|(U + €%)). This equation was derived first in Refs. [8, 9].
The corresponding numerical data are shown in Fig. 1, where the Kondo tempera-

ture is plotted as a function of the parameter p cos(6/2). This figure clearly shows
that the Kondo temperature goes to zero when p — 1 and magnetic configuration
tends to parallel alignment.

4. Equation of motion method

To find conductance of the system we applied the equation of motion method
for the non-equilibrium Green function. The electric current has been calculated
following Ref. [2], but additionally the effective exchange magnetic field Bey aris-
ing in non-collinear systems due to coupling with ferromagnetic electrodes [7] has
been taken into account. This exchange field is responsible for the reduction of the
Kondo anomaly in differential conductance, as shown in Fig. 2, where the conduc-
tance as well as the corresponding tunnel magnetoresistance are shown for several
values of the angle between magnetic moments of the leads. Suppression of the
Kondo anomaly is clearly seen when the configuration departs from the antiparallel
alignment. This suppression leads to negative tunnel magnetoresistance.
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