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A localized spin system of fractal symmetry and Heisenberg exchange

between nearest neighbors is considered. We define a specific class of fractals:

“net fractals” and prove that in the logarithmic scale they are isomorphic

with some bulk crystals. Further, with the use of logarithmic coordinates

we show that the “net fractal” magnetic fractons can be presented as the

conventional magnons.
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1. Introduction

The concept of fractal has become a powerful tool in analysis of common
aspects of many complex processes observed in physics, biology, chemistry or earth
sciences. Brownian motion, turbulence, colloid aggregation or biological pattern
formation can be fully understood only when the idea of self-similarity of fractal
structures is applied. The hallmark of a fractality is a hierarchical organization of
its elements, described by discrete scaling laws, which makes the fractal, regardless
of magnification or contraction scale, look the same. This property of fractals is
called self-similarity, self-affinity or self-replicability. Although physical systems
modeled by fractals are non-translation-invariant, it is a well-known fact that the
self-similar fractals as well as the physical quantities on fractal systems show log-
periodicities (see [1] and references therein). This opens a possibility to describe
the symmetries of magnetic self-similar fractals in the way that is reminiscent of
conventional formalism developed for crystalline systems. Motivated by this fact
we present a study of fractal spin excitations (fractons), which is similar in spirit
to the magnon approach in the solid state theory.

We say that K ∈ R3 satisfies the scaling law S, or is an infinite-size self-
-similar fractal, if S : K = K. Let us limit our considerations to fractals in which
the self-similarity can be realized only via linear maps, i.e., by transformations
which point r = (x1, x2, x3) ∈ K ⊂ R3 transform into the point r′ = (x′1, x

′
2, x

′
3)

according to the formula x′i = Si1x1+Si2x2+Si3x3; where i = 1, 2, 3. This transfor-
mation is represented by matrix S. If we orient coordinate axes along the eigenvec-
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tors of matrix S (i.e., r = (x1, x2, x3) → (ξ1, ξ2, ξ3)) then the transformation takes
the form S = S1S2S3. Each Si represents multiplier along coordinate axis ξi. Let
us consider more general transformations of the type Sm,n,l = (S1)n(S2)m(S3)l,
where (Si)n denotes n-tuple superposition of transformation Si, and define a class
of infinite “net fractals” Gnf , for which the relation Sm,n,l : Gnf = Gnf is valid. It
can be proven [1] that, when presented in logarithmic scale, the family of mappings
S(m,n,l) is isomorphic with a 3D crystal lattice. This means that the isomorphism
S(m,n,l) → (ma1, na2, la3) holds.

The purpose of this paper is to study the spin excitations over fractal subset.
Most theoretical studies of the spin excitations in fractal systems are limited to
considerations at universal level, without referring the specific physical model.
In our study we focus our considerations on a specific model which, we believe,
describes behavior of some real systems.

2. Model and discussion

Let us consider a “net fractal” cluster, consisting of N localized magnetic mo-
ments with the Heisenberg exchange interaction between nearest-neighbour sites.
The Hamiltonian of the system reads

H =
∑

i,j

I(rij)σiσj , (1)

where the sum goes over all nearest neighbours sites of the fractal site n, I(rij)
and σi denote the exchange integrals and localized spin, respectively. Let us dis-
cuss now the non-homogeneities of the spin density and exchange integrals on a
“net fractal”. We assume that the density of magnetic moments follows the aver-
aged mass density distribution m(r) which for real fractals scales on the average
as m(r) = m0(r/a)d, where d is the fractal mass dimension [2], the same refers
to magnetisation. It is natural to assume that the self-similarity of the fractal is
reflected also in the symmetry of exchange interactions. We assume therefore that
also the exchange integrals exhibit the power law scaling with the separation, we
take it in the form I(λrij) = λ−σI(rij) (for the Ruderman–Kittel–Kasuya–Yosida
(RKKY)-like interactions the σ can be approximated by the spectral dimension of
the system [3, 4]). Let us now recall the (log-scale) isomorphism of “net fractals”
and some crystal lattices. With the assumptions above the magnetic “net frac-
tal” is mapped onto a spin lattice. Simultaneously, the density of energy stored
in magnetic subsystem becomes (in the log-scale) uniform. We should point out
here that it does not mean that system is uniform, indeed, in the fractal system
the magnetic bonds exist only along directions allowed by the internal geometry.
This means that we have mapped the magnetic fractal onto a crystal lattice, in
which the spins bounded by the Heisenberg exchange form the percolation cluster
separated from the surrounding by the “red bonds”. With arbitrary boundary
conditions it is impossible to gain some information about the fractal excitations,
so let us consider some asymptotic cases. Let us consider first a somewhat unreal-
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istic case when there are no broken bonds in the log-scale picture. Thus, we have
a system with uniform spin density and all exchange integrals being equal.

Let us suppose that some magnetic “net fractal” system is perturbed and
consider the allowed excitations of it. In real space the excitations of a fractal sys-
tem are called fractons and their spatio-temporal variations depend strongly on the
fractal symmetry and exchange constants [2]. Fortunately, our “net fractal” system
possesses a specific symmetry which allows us to draw more general conclusions
that refer to the nature of magnetic fractons. As we know, the only allowed exci-
tations in a uniform magnetic system are the spin waves. This means that fracton
excitations in the magnetic “net fractal”, when pictured in the logarithmic scale
mimic the spin waves and fracton appears to be the logarithmic-scale magnon. The
scenario presented above refers to the ideal system, in real ones we should account
for the percolation effect. As the starting point for our analysis of the percolation
effect we will take the fact that magnetisation oscillation µ(r, t) associated with
the spin wave satisfies the classical wave equation ∇2µ− (1/c2)(∂2µ/∂t2) = 0.

As we have shown above, the “net fractals” can be mapped onto percolating
network. The fact that such relation holds for real system has been confirmed ex-
perimentally in site diluted ferromagnets [5]. To account for the existence of “red
bonds” we will use the fact that linearized equation of motion for ferromagnetic
spins has the form of diffusion Eq. [5]. This allows the evolution of the local spin
perturbation to be modeled by the diffusion process. The diffusion on the fractal
system as the rule involves the possibility of fractional dynamics [6] medium. The
effect of percolation (due to the “red bonds”) is accounted for by introduction of
fractional derivatives into the conventional wave equation. Within this approach
the generalized wave equation for the amplitude of local oscillation u(x, t) can be
formally written as [6]:

(∆)2βµ− 1
c2α tD

2αµ = 0. (2)

The fractional time derivative reflects the damping effect while fractional space
derivatives describe the reduced dimensionality of the system. The ratio of α and
β in Eq. (2) determines the fractional spectral (fracton) dimension, which in turn
governs the thermodynamical behavior of the spin system [1, 4]. Since there are
many definitions of fractional derivatives in any approach, which involves the frac-
tional calculus techniques, one should define, which definition of fractional pseudo-
-differential is used. Following the approaches of [6] we assume that the fractional
time derivatives tD

a∗ are these of Caputo, while the space xDb ones are these of
Riemann–Liouville [7]. Finding the solution of Eq. (2) for arbitrary values α and β

in its most general form is impossible, however, under additional assumptions we
can find some specific solutions. Indeed, let us suppose that we can separate the
variables x and t. This means that we assume that u(x, t) = u1(x) u2(t). Provided
that these our solutions fulfill such an assumption, we can rewrite Eq. (2) as
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1
u1(x)xD2βu1(x)− 1

c2αu2(t)
tD

2α ∗ u2(t) = 0. (3)

Equation (3) is equivalent to the two independent differential equations of single
variable x or t, which give us the oscillation amplitude in the form [7]:

u(x, t) = u0|x|β−1tEβ,β(iK|x|β)Eα,α(iKcαtα). (4)
The Mittag–Leffler function Eα,α(x) [7] behaves like a stretched-exponential
exp(−xα), at short times and like xα as x → ∞. Evidently real fractals are
always finite so the boundary conditions have to be accounted for. Let us suppose
that our finite system extended over continuous manifold M is tethered at the
boundary ∂M. Let us assume (independently of the initial conditions which en-
sure uniqueness of the solution) typical tethering of the form u(x, t)|∂M = 0. It can
be easily seen that in the case of symmetricalM (e.g. x ∈ [−L,L]) solution (4) can
satisfy this condition. Indeed, the tethering is equivalent to Eα,α(iK|L|) = 0. This
means that the number of allowed vibrational eigenmodes is equal to the number
of zeroes x̃n, i.e. Eα,α(xn) = 0, of the generalized Mittag–Leffler functions. Thus,
the allowed values of K (K is the counterpart of wave vector k in conventional sys-
tems) become quantized, Kn = xn/L. As we know, the Mittag–Leffler functions
have a finite number of zeroes so the condition u(x, t)|∂M = 0 implies that only a
finite number of vibration eigenmodes within finite fractal system is possible.
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