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The electronic self-energy of the two-dimensional Hubbard model, com-

puted in the non-crossing approximation within the composite operator

method, is studied as a function of frequency as well as temperature at

the Fermi surface, for a value of doping at which the pseudogap is already

well developed. For values of momentum belonging to the phantom arc of

the Fermi surface, both dependences show anomalous power law behavior in

contrast to that expected from the Fermi liquid theory.
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1. Introduction

The two-dimensional Hubbard model is generally believed to be the minimal
model sufficient to describe various aspects of high-Tc cuprate superconductors
— strong electronic correlations, competition between localization and itineracy,
Mott physics, and low-energy spin excitations. At the same time, certain anoma-
lous features — pseudogap, Fermi arcs, kinks, non-Fermi liquid behavior seen
experimentally in the underdoped region of the phase diagram, call for use of
powerful self-consistent analytical approximation methods. In this work, encour-
aged by rather promising results obtained in Ref. [1] by means of the non-crossing
approximation within the composite operator method, we analyze the frequency
and temperature dependence of the electronic self-energy at the Fermi surface in
the underdoped region.

2. The Hubbard model

The Hamiltonian of the two-dimensional Hubbard model reads as

H = −4t
∑

ij

αijc
†(i)c(j) + U

∑

i

n↑(i)n↓(i)− µ
∑

i

n(i), (1)

where c†(i) = (c†↑(i), c
†
↓(i)) is the electronic creation operator in spinorial notation

at the site i, nσ(i) = c†σ(i)cσ(i) is the charge density operator for spin σ at the site
i, n(i) =

∑
σ nσ(i) is the charge density operator at the site i, µ is the chemical

potential, U is the on-site Coulomb interaction strength, t is the hopping integral,

(395)
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αij is the projection operator on the nearest-neighbor sites. (For a generic operator
Ψ(i), we will often use the following definition: Ψα(i) =

∑
j αijΨ(j).)

3. The equations of motion and the basic field

We begin with the following equation of motion for the electronic operator
c(i) in the Heisenberg picture (i = (i, t)):

i
∂

∂t
c(i) = −µc(i)− 4tcα(i) + Uη(i) (2)

with η(i) = n(i)c(i) and decompose c(i) as c(i) = ξ(i) + η(i), where ξ(i) =
[1− n(i)] c(i) and choose ξ(i) and η(i) as components of the basic field ψ†(i) =
(ξ†(i), η†(i)).

The basic field then satisfies the following equations of motion:

i
∂

∂t
ψ (i) =

∑

j

εijψ(j, t) + δJ(i) (3)

with

εij = δijε0 − 4tαijI (1 + σ1) , (4)

δJ (i) = σ3π(i), π(i) =
1
2
σµδnµ(i)cα(i) + c†α(i)c(i)c(i), (4)

ε0 =
(−µ 0

0 U − µ

)
, I = F 〈{

ψ (i) , ψ† (j)
}〉

=
(

1− n
2 0

0 n
2

)
, (6)

where n is the filling, δnµ (i) = c† (i)σµc (i)− δµ0n is the charge (µ = 0) and spin
(µ = 1, 2, 3) density fluctuation operator at the site i, σµ = (1, σ), σµ = (−1, σ), σ

are the Pauli matrices, 〈. . .〉 stands for the thermal average in the grand-canonical
ensemble and F denotes the Fourier transform.

4. The Green function

We now compute the thermal retarded Green function G(k, ω) =
F 〈R [

ψ(i)ψ†(j)
]〉

in terms of the self-energy Σ (k, ω) and, in turn, of the scatter-
ing matrix T (k, ω) = I−1[m(k) + F 〈R [

δJ(i)δJ†(j)
]〉

)I−1:

G(k, ω) =
1

ω − ε(k)− Σ (k, ω)
I, Σ (k, ω) = I

1
T−1(k, ω) + G0(k, ω)

, (7)

where G0(k, ω) = 1
ω−ε(k)I is just the 0-th approximation (δJ(i) = 0) and

m(k) = F 〈{
δJ(i), ψ†(j)

}〉
= −4t [α(k)p + ∆] (1 − σ1) with ∆ = Cα

11 − Cα
22,

p = 1
4 (Cα

0 + 3Cα
3 ) − Cα

p , Cα =
〈
ψα(i)ψ†(i)

〉
, Cα

µ =
〈
δnα

µ(i)δnµ(i)
〉
,

Cα
p =

〈
[c↑(i)c↓(i)]

α
c†↓(i)c

†
↑(i)

〉
.

In the pole approximation, we would have just Σ (k, ω) ≈ m (k) I−1 as
we would replace δJ (i) by its projection on the chosen basis ψ (i): δJ (k) ≈
m (k) I−1ψ (k). In the non-crossing approximation [2], we take advantage of
the possibility of exactly rewriting δJ(i) in terms of bosonic fields multiplied by
fermionic ones. Accordingly, we can approximate the scattering matrix T (k, ω)
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and retain the pole contribution plus the non-crossing diagrams, that is diagrams
containing the convolution of charge and spin. (Here we choose to neglect the pair
term propagators compared to the electronic one [1]):

Σ (k, ωn) ≈ m(k)I−1 − 4t2(1− σ1)

×F {F−1 [S(k, ωn)]F−1
[
α2(k)Gcc(k, ωn)

]}
I−1, (8)

where

Gcc(k, ωn) = F 〈Tτ

[
c(i)c†(j)

]〉

and

S(k, ωn) = F 〈Tτ [δnµ(i)δnµ(j)]〉 .
Here, the parameter p has been fixed through the algebraic constraint〈
ξ(i)η†(i)

〉
= 0 [3] and charge and spin propagators have been computed in the

two-pole approximation [4]. It is worth noticing that this approach is completely
microscopic, exclusively analytical, and fully self-consistent.

5. Results

In Fig. 1, we can see that the imaginary part of the self-energy Σ ′′(k, ω)
shows two different behaviors as a function of frequency when computed at the
nodal point k = S and at its companion position on the phantom half of the hole
pocket k = S (see Fig. 2 (left part) and Ref. [1]). In particular, at k = S, a
parabolic-like (i.e., Fermi-liquid-like) behavior is apparent, whereas at k = S, the
dependence shows a predominance of the linear term.

Fig. 1. Spectral density function A(k, ω), real (′) and imaginary (′′) part of the self-

-energy Σ(k, ω), non-interacting dispersion ε(k, ω) as functions of frequency at (left)

k = S and (right) k = S for n = 0.92, T = 0.02 and U = 8.

In Fig. 2 (right part), the imaginary part of the self-energy at the Fermi
surface Σ ′′(k, ω = 0) is reported as a function of the temperature at the nodal point
k = S and at k = S. Although less evident than for the frequency dependence,
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Fig. 2. (left) Underlying Fermi surface at U = 8, T = 0.02 and n = 0.92. (right)

Imaginary part of the self-energy Σ ′′(k, ω = 0) as function of temperature at (squares)

k = S and (circles) k = S for n = 0.92 and U = 8.

the temperature dependence is also rather different: exactly parabolic (i.e., exactly
Fermi-liquid) at the nodal point, with a predominance of linear and logarithmic
contributions at S.

6. Conclusions

Summarizing, we have shown that the pseudogap opening and the decon-
struction of the Fermi surface in open arcs are accompanied by non-Fermi-liquid
behaviors of the electronic self-energy as manifested in the frequency and temper-
ature dependence.
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