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The influence of lattice defects (vacancies) on the ground-state proper-

ties of the spinless Falicov–Kimball model is studied by a well-controlled

numerical method in two dimensions. It is shown that in the presence of

vacancies (distributed randomly) the ground states of the Falicov–Kimball

model are phase separated for small f -electron concentrations nf and ex-

hibit the long-range order for nf near the half-filled band case nf = 1/2. In

addition, the dependence of average f -orbital occupancy on the concentra-

tion of vacancies is calculated for a wide range of model parameters. The

resultant behaviours are used to interpret the experimental data obtained

for the mixed-valence system Sm1−xB6.

PACS numbers: 75.10.Lp, 71.27.+a, 71.28.+d, 71.30.+h

1. Introduction

The Falicov–Kimball model (FKM) [1] was introduced in 1969 to describe
metal–insulator transitions in rare-earth and transition-metal compounds and later
it has been used successfully to study a great variety of many-body effects, of
which valence transitions, charge-density waves and electronic ferroelectricity are
the most common examples [2, 3]. The Hamiltonian of the model can be written
as a sum of three terms

H =
∑

〈i,j〉
tijd

+
i dj + U

∑

i

f+
i fid

+
i di + Ef

∑

i

f+
i fi, (1)

where f+
i , fi are the creation and annihilation operators for an electron in the lo-

calized state at lattice site i with binding energy Ef and d+
i ,di are the creation and

annihilation operators of the d-electrons hopping between the nearest-neighbour
sites with hopping probability t. The second term represents the on-site Coulomb
interaction between the d and f electrons.

(291)
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In the present paper we study the influence of lattice defects (vacancies) on
the ground state (GS) of the spinless FKM with the aim to describe the valence
transition behaviour of Sm ions in the Sm1−xB6 compound. The defect is repre-
sented here by a vacancy without any additional impact on the lattice structure.
This is a good approximation because the crystal structure of non-stoichiometric
compound Sm1−xB6 remains stable over a broad range of vacancy concentrations
(up to 30%) [4, 5].

From the numerical point of view there is only one fundamental difference
between the FKM with and without vacancies, and namely, that in the model
with vacancies the hopping matrix amplitudes should be changed in such a way
that the electron transitions to the vacant sites are forbidden, i.e., tij = 0 if i or
j represents the position of vacant site. Since in the spinless version of the FKM
the operator f+

i fi commutes with the total Hamiltonian (1), it can be replaced by
a classical variable wi, taking only two values: 1 or 0, according to whether or not
the site i is occupied by the localised f electron. Then the Hamiltonian (1) can be
written as H =

∑
〈i,j〉 hijd

+
i dj + Ef

∑
i wi, where hij(w, v) = tij + Uwiδij . This

Hamiltonian is for a given f -electron configuration w and a given distribution of
vacancies v the second-quantised version of the single-particle Hamiltonian, so the
investigation of the model is reduced to the investigation of the spectrum of h for
different w and v. We consider only the case Nf + Nd + Nv = L (where Nf , Nd,
Nv and L are the total number of f electrons, d electrons, vacancies and lattice
sites, respectively), which is the point of special interest for the valence transitions,
caused by promotion of electrons from the localised f orbitals (fn → fn−1)to the
conduction band states.

2. Results and discussion

To study the GS properties of the model we have used a well-controlled
numerical method elaborated recently by one of the present authors [6]. The
numerical calculations have been done for a wide range of the Coulomb interactions
in order to represent the typical behaviour of the model in the weak (U = 0.5, 1
and 2), intermediate (U = 4) and strong coupling limit (U = 8, 10). At fixed Nv

the GS configurations corresponding to Nf = 0, 1 . . . L−Nv
2 were calculated for a

set of hundred random distributions of vacancies for each selected U . The same
procedure was repeated on several different clusters and it was found that the
main features of the GS configurations hold on all examined lattices and thus can
be used satisfactorily to represent the behaviour of macroscopic systems.

The representative types of GS configurations are displayed in Fig. 1. We
have found that for the weak interactions, small densities of vacancies nv = Nv

L

and small densities of f electrons nf = Nf

L−Nv
(nv ≤ 1/8, nf < 1/12 for U ≤ 1

and nv ≤ 1/8, nf < 1/16 for U = 2) the GS configurations of the model are
the n-molecular phases (the four-molecular phases and the two-molecular phases).
In the area of 1/12 < nf < 1/2 for U ≤ 1 and 1/16 < nf < 1/2 for U = 2
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Fig. 1. Representative types of GS configurations for U = 1, 2, L = 144 and various nv

and Nf . ¯ represents a vacancy, • (·) represents a position of occupied (unoccupied) f

orbital.

the GS configurations are the quasi-homogeneous phases and near nf ≈ 1/2 the
perturbed chessboard phases minimise the GS energy. The increase in U and nv

suppresses the area of stability of n-molecular phases that vanish entirely for U > 4
or nv ≈ 1/4.

Having the complete set of GS configurations for all f -electron concentrations
nf ≤ 1/2 and all accessible concentrations of vacancies nv ≤ 1/4 on finite two-
-dimensional clusters of L = 36 and L = 64 sites we have calculated also the
average f -electron occupancy nav

f as a function of Ef by averaging over the set of
hundred randomly chosen distributions of vacancies. Typical results of numerical
simulations are shown in Fig. 2 and Fig. 3a and they clearly demonstrate that
with increasing nv the staircase structure of the conventional FKM is gradually
suppressed and the valence transitions become smoother.

Depending on the values of model parameters U and Ef we have observed
that nav

f as a function of nv can increase or decrease. To do the quantitative com-
parison with experimental data obtained for mixed-valence compound Sm1−xB6

[4] we have selected U = 2 and Ef = 0.444 that models (as our previous results
showed [2]) very well the real situation in SmB6 compound (nf ≈ 0.47). The
resultant theoretical and experimental behaviours are shown in Fig. 3b and one
can see a nice quantitative correspondence between them. This result shows that
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Fig. 2. Dependence of the average f -electron occupation number nav
f on the f -level

position Ef for nv = 1/4 and nv = 0 for U = 0.5, 4, and 8.

Fig. 3. (a) Dependence of the average f -electron occupation number nav
f on the

f -level position Ef for different nv. (b) Dependence of nav
f on nv. ( ) Experimental

data obtained for Sm1−xB6 [4], (×, ¡) theoretical data obtained for L = 36, 64.

the spinless FKM in spite of its relative simplicity can yield the correct physics for
description of complex mixed-valence systems, like Sm1−xB6.
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