Magnetic Properties of $\text{UFe}_{2+\delta}$ Prepared by Splat Cooling

L. Havelaa, K. Miliyanchuka, J. Pešičkaa, A.P. Gonçalvesb, J.C. Waerenborghb, L.C.J. Pereirab, E. Šantavác and J. Šebekc

aCharles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
bDep. Química, Instituto Tecnológico e Nuclear, 2686-953 Sacavém, Portugal
cInstitute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

A series of $\text{UFe}_{2+\delta}$ materials was prepared using splat cooling. The Laves phase structure can accommodate up to 0.3 Fe excess, while T_C is enhanced from 172 K to approximately 240 K. Higher Fe concentration leads to the segregation of α-Fe. 57Fe Mössbauer spectroscopy indicates higher Fe magnetic hyperfine fields on Fe nuclei occupying the U sublattice than for the regular Fe sites.

PACS numbers: 71.28.+d, 75.50.Bb

1. General information

Magnetic properties of uranium-based compounds are related to the character of the 5\textit{f} electronic states, ranging between a localized character and itinerancy (see e.g. [1]).

UFe_2 is the first uranium compound reported to exhibit ferromagnetism [2]. The Curie temperature T_C given by various authors differs in some extent, but remains in the vicinity of 160 K in most of cases (see [1] and references therein).

The itinerant character of magnetism was deduced on the basis of suppression of T_C and spontaneous magnetization μ_s by pressure [3]. Neutron-diffraction study [4] revealed that UFe_2 involves both 3\textit{d} and 5\textit{f} magnetism. The main contribution to the spontaneous magnetization comes from Fe ($0.60\mu_B$/Fe), while U spin and orbital moments practically compensate.

The U–Fe phase diagram contains two intermediate phases, namely U$_6$Fe (formed non-congruently, weakly paramagnetic, superconducting [1]), and UFe_2. Amorphous U–Fe systems have been successfully prepared in the vicinity of the two
deep eutectic points, occurring at $U_{17}Fe_{83}$ and $U_{66}Fe_{34}$, respectively. Amorphous systems with the composition close to $U_{6}Fe$ are superconducting, in analogy to the crystalline phase [5]. Approaching the latter eutectic point, weakly ferromagnetic clusters start to arise below about 120 K [6]. Amorphous material in the vicinity of the former eutectic point ($U_{27}U_{73}$) was found to exhibit magnetic ordering with spin glass features below $T = 32$ K [7].

In this work we concentrated on a more Fe-rich part of the phase diagram. The cubic Laves phase UFe_2 was reported to exist over a certain concentration range. Fe deficient samples exhibit a reduction of T_C from 162 K for UFe_2 down to 112 K for $UFe_{1.7}$ [8]. The Fe deficiency manifests in an increase in the lattice parameter a from 705.7 pm for UFe_2 to 708.7 pm for $UFe_{1.7}$. An attempt to prepare UFe_2 with Fe excess by ball milling [9] has led to an increase in T_C for the amorphous phase up to 207 K. One should note that the high melting point of UFe_2 (1228°C) prevents to prepare amorphous UFe_2 by common fast cooling methods. Here we describe results of splat-cooling synthesis of the materials with the nominal stoichiometry from UFe_2 to UFe_0.

2. Experimental results and discussion

Our magnetization studies readily indicated that the ordering temperatures, which increase marginally for splat-cooled (SpC) UFe_2 [10], can increase markedly by the Fe excess, reaching 220–240 K for $UFe_{2.3}$ (Figs. 1, 2), while the respective anomaly becomes somewhat smeared out. A further increase in the Fe content led to a segregation of α-Fe. This was directly revealed by scanning electron micrography. The grains of the U-containing material are small ($< 1 \mu m$). Only for SpC UFe_2 their size reaches $\approx 5 \mu m$ [11]. X-ray diffraction indicates that the cubic Laves phase accommodates the excess of 0.3 Fe by the Fe occupation of U sites, shrinking the lattice parameter a. The observed tendency of the relation of T_C and a extrapolates the original dependence known for U excess which can be related to a larger lattice parameter induced by atomic disorder for the SpC material. As seen from Fig. 1, such shift in $T_C(a)$ could be expected from the pressure dependence of UFe_2 [3].

The increase in T_C is accompanied by a dramatic increase in spontaneous magnetization at 4.2 K (not shown here) from 1.0μ_B/f.u. in UFe_2 (difference of bulk and SpC is small) to 1.9μ_B/f.u. in $UFe_{2.3}$. The reason for such increase is well seen from the 57Fe Mössbauer spectroscopy, performed both at room temperature (displaying a doublet spectrum plus the α-Fe sextet for higher Fe content) and at $T = 50$ K. The refinement reveals, besides the two sextets belonging to the two magnetically inequivalent sites known for UFe_2, a new component belonging undoubtedly to Fe placed into the U sublattice.

Such Fe atoms have the isomer shift by 0.11 mm/s higher comparing to the Fe sites in the Fe sublattice (pointing to a lower hybridisation with U states for the new type of sites). The magnetic hyperfine field B_{hf} is nearly doubled for such Fe
Magnetic Properties of UFe$_{2+x}$ Prepared by Splat Cooling

Fig. 1. Relation of T_C and the lattice parameter a for various UFe$_x$ systems. Full symbols mark values on bulk UFe$_{2-y}$ samples [2], empty symbols are our data on bulk UFe$_2$ and the splats. The short dash-dotted line shows the pressure dependence of T_C for bulk UFe$_2$ [5] using the experimental bulk modulus $B_0 = 239$ GPa.

Fig. 2. Temperature dependence of magnetization in $\mu_0 H = 0.5$ T (zero-field-cooled mode) for UFe$_{2+x}$ splats. Vertical bars and the dashed line indicate the respective T_C values.

antistructure atoms, reaching 8.4 T, while the Fe sublattice has the B_{hf} values still enhanced (to 4.4 and 4.1 T, respectively) comparing to the Fe sublattice in UFe$_2$ ($B_{hf} = 3.5$ and 2.9 T, respectively). Assuming the zero total magnetic moment on U atoms is preserved, the antistructure Fe atoms should contribute by a sizeable moment ($1.7 \mu_B$ each) to explain the total magnetization, if the magnetic moments of the Fe sublattice are assumed to be proportional to the B_{hf} values. With the
Fe concentration increasing over UFe$_{2.3}$, the spectra exhibit only the increase in the α-Fe component.

Acknowledgments

This work was supported by the Program GRICES/ASCR 2007, by the Grant Agency of the Czech Republic under the grant No. 202/07/0418, and by the Grant Agency of the Academy of Sciences of the Czech Republic under the grant No. A100100530. It was a part of the research plan MSM 0021620834 financed by the Ministry of Education of the Czech Republic.

References

