Proceedings of the CSMAG'07 Conference, Košice, July 9-12, 2007

# Anomalous Diamagnetism of YbPb<sub>3</sub> Compound: Pressure Effects

# A.E. BARANOVSKIY<sup>*a*</sup>, G.E. GRECHNEV<sup>*a*</sup>, A.S. PANFILOV<sup>*a*</sup>, I.V. SVECHKAREV<sup>*a*</sup>, O. ŻOGAL<sup>*a*</sup>, A. CZOPNIK<sup>*b*</sup> AND A. HACKEMER<sup>*b*</sup>

<sup>a</sup>B. Verkin Institute for Low Temperature Physics and Engineering 61103 Kharkov, Ukraine

 $^b \rm W.$  Trzebiatowski Institute of Low Temperature and Structural Research 50-950 Wrocław, Poland

The effect of a uniform pressure on the magnetic susceptibility was measured for YbPb<sub>3</sub> compound, wherein a degeneracy point of the energy bands is located just below the Fermi level and responsible for the anomalous diamagnetism. Theoretical analysis of the experimental data has revealed that a pronounced increase of diamagnetism with pressure is governed by closing the degeneracy point towards the Fermi energy

PACS numbers: 75.10.Lp, 75.80.+q

## 1. Introduction

The detailed calculations of the band structure in isostructural and isovalent AuCu<sub>3</sub>-type compounds CaSn<sub>3</sub>, CaPb<sub>3</sub>, YbSn<sub>3</sub>, and YbPb<sub>3</sub> (where Yb atoms are divalent) [1, 2] revealed a degeneracy point of the energy bands  $E_d$  in the vicinity of



Fig. 1. Experimental ( $\circ$ ) and theoretical (solid line) magnetic susceptibility of YbPb<sub>3</sub> [1] (a) and its pressure dependence at 78 and 300 K (b).

(243)

A.E. Baranovskiy et al.

the Fermi level  $E_{\rm F}$ . According to the existing theory of the orbital susceptibility for degenerated bands [3, 4] this peculiarity gives rise to an anomalous diamagnetism with a distinctive temperature dependence, which was observed experimentally in these systems (see e.g. [1, 5]). The real magnitude of the effect is strongly governed by the parameter  $\xi = E_{\rm F} - E_{\rm d}$ , being a giant at  $E_{\rm F} = E_{\rm d}$ , T = 0 K. In YbPb<sub>3</sub> compound  $E_{\rm F}$  is so close to  $E_{\rm d}$  that the anomalous diamagnetism dominates in its magnetic susceptibility [1, 2] (see Fig. 1a). Here we report results of a study of the pressure effect on magnetic susceptibility and electronic structure of YbPb<sub>3</sub> to gain a better insight into the nature of the anomalous magnetism in this and similar  $RM_3$  compounds.

#### 2. Results and discussion

The YbPb<sub>3</sub> sample was grown by a similar to [6] method in the form of druse involving a few single crystals of 1–3 mm in size immersed in an excess of Pb with total mass of about 0.7 g. The measurements of susceptibility  $\chi$  were carried out under helium gas pressure up to 2 kbar at fixed temperatures 78 and 300 K by using the pendulum-type magnetometer placed into a non-magnetic pressure cell [7]. The relative errors did not exceed 0.2%. Experimental dependences  $\chi(P)$ (Fig. 1b) show a linear increase of diamagnetism with pressure. The corresponding pressure derivatives of susceptibility are listed in Table.

#### TABLE

Magnetic characteristics of YbPb<sub>3</sub> compound:  $\chi_0$  is intrinsic susceptibility according to work [1],  $\chi_{\text{meas}}$  and  $d\chi_{\text{meas}}/dP$  measured values of the sample susceptibility and its pressure derivative,  $d\chi_0/dP$  pressure derivative of the intrinsic susceptibility, and  $d\chi_{\text{theor}}/dP$  calculated pressure effect.

| T   | $\chi_0$                | $\chi_{ m meas}$ | $\mathrm{d}\chi_{\mathrm{meas}}/\mathrm{d}P$ | $\mathrm{d}\chi_0/\mathrm{d}P$ | $\mathrm{d}\chi_{\mathrm{theor}}/\mathrm{d}P$ |
|-----|-------------------------|------------------|----------------------------------------------|--------------------------------|-----------------------------------------------|
| Κ   | $10^{-6} \text{ emu/g}$ |                  | $10^{-6} \text{ (emu/g)/Mbar}$               |                                |                                               |
| 78  | -1.542                  | -1.062           | $-8.5\pm1.5$                                 | $-11.1 \pm 2$                  | -13.3                                         |
| 300 | -0.715                  | -0.526           | $-3.4 \pm 1$                                 | $-4.4 \pm 1.5$                 | -3.3                                          |

It should be noted that our values of the magnetic susceptibility at ambient pressure somewhat differ from the data of [1] for the YbPb<sub>3</sub> single crystal of high quality (see Table). That is obviously due to the presence in our sample, of the free Pb foreign phase and a small amount of Yb<sub>2</sub>O<sub>3</sub> impurity, which contribute the temperature independent weak diamagnetism of Pb and the Curie–Weiss paramagnetism [5] of Yb<sup>3+</sup> ions. From analysis of the difference in  $\chi$  at two temperatures from Table the weight contents of Pb and Yb<sub>2</sub>O<sub>3</sub> were estimated to be about 23% and 1%, respectively. Despite the relatively large content of the free Pb in the sample, its contribution to the measured pressure effect is negligible because of a mainly ionic nature of Pb diamagnetism. As to the paramagnetism of Yb<sub>2</sub>O<sub>3</sub>, its pressure dependence, arisen from the volume effect on the paramagnetic Curie temperature  $\theta ~(\approx -3 \text{ K [5]})$ , appears to be well below the experimental error bars. Hence the evaluations of the pressure derivative for the intrinsic susceptibility of YbPb<sub>3</sub> from the measured effect (Table) include only corrections for the weight content of the YbPb<sub>3</sub> compound in the sample.

As it has been established earlier [1, 2], the dominant contribution to the magnetic susceptibility  $\chi \ (\equiv \chi_0)$  of YbPb<sub>3</sub> is the orbital diamagnetism  $\chi_d$  of degenerated bands.Within two-band approximation of the spectrum in the vicinity of the critical point  $E_d$  (Fig. 2a)  $\chi_d$  can be calculated by [2]

$$\chi_{\rm d} = A \int_0^{\xi_0} \frac{\mathrm{d}\varepsilon}{\varepsilon} \left[ \frac{1}{1 + \exp\left(\frac{-\varepsilon - \xi}{T}\right)} - \frac{1}{1 + \exp\left(\frac{\varepsilon - \xi}{T}\right)} \right]. \tag{1}$$

Here A is ab initio calculated scaling coefficient,  $\xi_0$  — so-called cutoff parameter, and  $\xi = E_{\rm F} - E_{\rm d}$ . By including in (1) the effect of electron scattering on defects of the lattice in terms of the effective temperature  $T_{\rm sc}$  added to the real T, the best fit of (1) to the experimental  $\chi(T)$  data [1] has been obtained with  $\xi \simeq 0.7$  mRy and  $T_{\rm sc} \simeq 50$  K [2]. Since the  $\chi_{\rm d}$  magnitude is mainly determined by the  $\xi$  value, the pressure effect on  $\chi$  is assumed to be governed by the pressure dependence of  $\xi(P)$  and can be described as

$$\frac{\mathrm{d}\chi}{\mathrm{d}P} \simeq \frac{\mathrm{d}\chi_{\mathrm{d}}}{\mathrm{d}P} \simeq \frac{\partial\chi_{\mathrm{d}}}{\partial\xi} \frac{\mathrm{d}\xi}{\mathrm{d}P}.$$
(2)



Fig. 2. (a): Calculated band structure of YbPb<sub>3</sub> along the XR direction of the Brillouin zone (see insert) in the vicinity of the Fermi level  $E_{\rm F} = 0$  [2]. (b) Volume dependence of the relative position of  $E_{\rm F}$  and degeneracy point  $E_{\rm d}$ . The data for the equilibrium unit-cell volume at ambient pressure are marked by arrow.

The *ab initio* full potential linear muffin-tin orbital (FP-LMTO) band structure calculations for YbPb<sub>3</sub> (see[2] for details) are carried out for a number of the lattice parameters close to the experimental value. This has allowed us to determine the volume dependence of  $\xi$  (Fig. 2b) and the corresponding pressure derivative  $d\xi/dP \simeq -23$  mRy/Mbar, by using the calculated value of the bulk modulus B = 0.53 Mbar. By substitution of this  $d\xi/dP$  value into (2), together with the value of  $\partial \chi_d/\partial \xi$  evaluated within (1) with the above-mentioned set of  $\xi$ and  $T_{\rm sc}$  data, the obtained estimates for the pressure effect of  $d\chi/dP$  appeared to be in good agreement with the experimental results (see Table).

### 3. Summary

In summary, the experimental and theoretical studies of the pressure effect on  $\chi$  in YbPb<sub>3</sub> have revealed that the pronounced increase of the anomalous diamagnetism with pressure is caused by decreasing the energy separation between  $E_{\rm F}$  and the degeneracy point  $E_{\rm d}$ . The initial  $E_{\rm F}$  position has been unambiguously determined to be above  $E_{\rm d}$  energy. The obtained estimate of  $d\xi/dP \simeq -23$  mRy/Mbar together with the best fit initial value of  $\xi \simeq 0.7$  mRy from [2] allow to expect a topological electronic phase transition in YbPb<sub>3</sub> at  $P \approx 30$  kbar, which is accompanied by closing the small electron "pockets" at the XR line of the Brillouin zone and a peak of the anomalous diamagnetism.

#### References

- A.E. Baranovskiy, G.E. Grechnev, I.V. Svechkarev, A. Czopnik, *Czech. J. Phys.* 54, D355 (2004).
- [2] A.E. Baranovskiy, G.E. Grechnev, I.V. Svechkarev, Low Temp. Phys. 32, 849 (2006).
- [3] G.P. Mikitik, I.V. Svechkarev, Sov. J. Low Temp. Phys. 15, 165 (1987).
- [4] G.P. Mikitik, Yu.V. Sharlai, Low Temp. Phys. 26, 39 (2000).
- [5] J.P.C. Klaasse, F.R. de Boer, P.F. de Châtel, *Physica B* 106, 178 (1981).
- [6] V.B. Pluzhnikov, G.E. Grechnev, A. Czopnik, O. Eriksson, LowTemp. Phys. 31, 313 (2005).
- [7] A.S. Panfilov, I.V. Svechkarev, L.F. Romasheva, Low Temp. Phys. 19, 200 (1993).

246