Anomalous Diamagnetism of YbPb₃ Compound: Pressure Effects

B. Verkin Institute for Low Temperature Physics and Engineering
61103 Kharkov, Ukraine
W. Trzebiatowski Institute of Low Temperature and Structural Research
50-950 Wroclaw, Poland

The effect of a uniform pressure on the magnetic susceptibility was measured for YbPb₃ compound, wherein a degeneracy point of the energy bands is located just below the Fermi level and responsible for the anomalous diamagnetism. Theoretical analysis of the experimental data has revealed that a pronounced increase of diamagnetism with pressure is governed by closing the degeneracy point towards the Fermi energy

PACS numbers: 75.10.Lp, 75.80.+q

1. Introduction

The detailed calculations of the band structure in isostructural and isovalent AuCu₃-type compounds CaSn₃, CaPb₃, YbSn₃, and YbPb₃ (where Yb atoms are divalent) [1, 2] revealed a degeneracy point of the energy bands E_d in the vicinity of

![Fig. 1. Experimental (○) and theoretical (solid line) magnetic susceptibility of YbPb₃ [1] (a) and its pressure dependence at 78 and 300 K (b).](243)
the Fermi level E_F. According to the existing theory of the orbital susceptibility for degenerated bands [3, 4] this peculiarity gives rise to an anomalous diamagnetism with a distinctive temperature dependence, which was observed experimentally in these systems (see e.g. [1, 5]). The real magnitude of the effect is strongly governed by the parameter $\xi = E_F - E_d$, being a giant at $E_F = E_d$, $T = 0$ K. In YbPb$_3$ compound E_F is so close to E_d that the anomalous diamagnetism dominates in its magnetic susceptibility [1, 2] (see Fig. 1a). Here we report results of a study of the pressure effect on magnetic susceptibility and electronic structure of YbPb$_3$ to gain a better insight into the nature of the anomalous magnetism in this and similar RM_3 compounds.

2. Results and discussion

The YbPb$_3$ sample was grown by a similar to [6] method in the form of druse involving a few single crystals of 1–3 mm in size immersed in an excess of Pb with total mass of about 0.7 g. The measurements of susceptibility χ were carried out under helium gas pressure up to 2 kbar at fixed temperatures 78 and 300 K by using the pendulum-type magnetometer placed into a non-magnetic pressure cell [7]. The relative errors did not exceed 0.2%. Experimental dependences $\chi(P)$ (Fig. 1b) show a linear increase of diamagnetism with pressure. The corresponding pressure derivatives of susceptibility are listed in Table.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>χ_0</th>
<th>χ_{meas}</th>
<th>$d\chi_{\text{meas}}/dP$</th>
<th>$d\chi_0/dP$</th>
<th>$d\chi_{\text{theor}}/dP$</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>-1.542</td>
<td>-1.062</td>
<td>-8.5 ± 1.5</td>
<td>-11.1 ± 2</td>
<td>-13.3</td>
</tr>
<tr>
<td>300</td>
<td>-0.715</td>
<td>-0.526</td>
<td>-3.4 ± 1</td>
<td>-4.4 ± 1.5</td>
<td>-3.3</td>
</tr>
</tbody>
</table>

It should be noted that our values of the magnetic susceptibility at ambient pressure somewhat differ from the data of [1] for the YbPb$_3$ single crystal of high quality (see Table). That is obviously due to the presence in our sample, of the free Pb foreign phase and a small amount of Yb$_2$O$_3$ impurity, which contribute the temperature independent weak diamagnetism of Pb and the Curie–Weiss paramagnetism [5] of Yb$^{3+}$ ions. From analysis of the difference in χ at two temperatures from Table the weight contents of Pb and Yb$_2$O$_3$ were estimated to be about 23% and 1%, respectively. Despite the relatively large content of the free Pb in the sample, its contribution to the measured pressure effect is negligible because of
a mainly ionic nature of Pb diamagnetism. As to the paramagnetism of Yb$_2$O$_3$, its pressure dependence, arisen from the volume effect on the paramagnetic Curie temperature θ (≈ -3 K [5]), appears to be well below the experimental error bars. Hence the evaluations of the pressure derivative for the intrinsic susceptibility of YbPb$_3$ from the measured effect (Table) include only corrections for the weight content of the YbPb$_3$ compound in the sample.

As it has been established earlier [1, 2], the dominant contribution to the magnetic susceptibility χ ($\equiv \chi_0$) of YbPb$_3$ is the orbital diamagnetism χ_d of degenerated bands. Within two-band approximation of the spectrum in the vicinity of the critical point E_d (Fig. 2a) χ_d can be calculated by [2]

$$\chi_d = A \int_{0}^{\xi_0} \frac{d\xi}{\varepsilon} \left[\frac{1}{1 + \exp \left(\frac{-\varepsilon - \xi}{T} \right)} - \frac{1}{1 + \exp \left(\frac{\varepsilon - \xi}{T} \right)} \right].$$

(1)

Here A is ab initio calculated scaling coefficient, ξ_0 — so-called cutoff parameter, and $\xi = E_F - E_d$. By including in (1) the effect of electron scattering on defects of the lattice in terms of the effective temperature T_{sc} added to the real T, the best fit of (1) to the experimental $\chi(T)$ data [1] has been obtained with $\xi \approx 0.7$ mRy and $T_{sc} \approx 50$ K [2]. Since the χ_d magnitude is mainly determined by the ξ value, the pressure effect on χ is assumed to be governed by the pressure dependence of $\xi(P)$ and can be described as

$$\frac{d\chi}{dP} \approx \frac{d\chi_d}{dP} \approx \frac{\partial \chi_d}{\partial \xi} \frac{d\xi}{dP}.$$

(2)

Fig. 2. (a): Calculated band structure of YbPb$_3$ along the XR direction of the Brillouin zone (see insert) in the vicinity of the Fermi level $E_F = 0$ [2]. (b) Volume dependence of the relative position of E_F and degeneracy point E_d. The data for the equilibrium unit-cell volume at ambient pressure are marked by arrow.

The ab initio full potential linear muffin-tin orbital (FP-LMTO) band structure calculations for YbPb$_3$ (see [2] for details) are carried out for a number of the lattice parameters close to the experimental value. This has allowed us to determine the volume dependence of ξ (Fig. 2b) and the corresponding pressure derivative $d\xi/dP \approx -23$ mRy/Mbar, by using the calculated value of the bulk
modulus \(B = 0.53 \) Mbar. By substitution of this \(\frac{d\xi}{dP} \) value into (2), together with the value of \(\frac{\partial \chi_{\varphi}}{\partial \xi} \) evaluated within (1) with the above-mentioned set of \(\xi \) and \(T_{sc} \) data, the obtained estimates for the pressure effect of \(\frac{d\chi}{dP} \) appeared to be in good agreement with the experimental results (see Table).

3. Summary

In summary, the experimental and theoretical studies of the pressure effect on \(\chi \) in YbPb\(_3\) have revealed that the pronounced increase of the anomalous diamagnetism with pressure is caused by decreasing the energy separation between \(E_F \) and the degeneracy point \(E_d \). The initial \(E_F \) position has been unambiguously determined to be above \(E_d \) energy. The obtained estimate of \(\frac{d\xi}{dP} \approx -23 \) mRy/Mbar together with the best fit initial value of \(\xi \approx 0.7 \) mRy from [2] allow to expect a topological electronic phase transition in YbPb\(_3\) at \(P \approx 30 \) kbar, which is accompanied by closing the small electron “pockets” at the XR line of the Brillouin zone and a peak of the anomalous diamagnetism.

References