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Quantum Model for Ferromagnetic Thin

Films with an Alternating Crystal Field

J. Kecer

Department of Physics, Technical University
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Within the framework of many-body Green’s function theory there are

studied the properties of the quantum Blume–Capel model for ferromagnetic

films with an alternating single-ion anisotropy on the odd atomic layers and

on the even ones. We analyse various possible phase diagrams for the surface

exchange couplings and the single-ion anisotropy parameters.
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1. Model and method

The ferromagnetic Blume–Capel–Ising (BCI) model has been studied within
the mean field approximation [1], the effective field theory [2], the two-spin cluster
approximation in the cluster expansion method [3, 4], Monte Carlo simulations [5],
a thermodynamically self-consistent theory based on an Ornstein–Zernike approx-
imation [6], the exact solution based on the Bethe lattice by means of the exact
recursion relations [7]. Most of the studies mentioned above displays also the ex-
istence of a tricritical point at which the phase transition changes from second
order to first order when the value of K2 becomes negative. Our work represents
the first atempt to consider a quantum version of BCI model. Within quantum
Blume–Capel (QBC) model we will study the influence of the enhancement of the
surface exchange coupling and the alternative single-ion anisotropy K2(1) on the
odd atomic layers and K2(2) on the even ones on the critical behaviour of thin
ferromagnetic films.

The Hamiltonian of the considered system consists a Heisenberg exchange
interaction with strength Jij > 0 between nearest neighbour lattice sites, an ex-
change anisotropy with strength D > 0, and a second-order single-ion anisotropy
with strength K2 > 0:
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Here the notation S±k = Sx
k ± iSy

k (k = i, j) is introduced, where i and j are
lattice site indices and 〈ij〉 indicates summation over nearest neighbour spins in
the atomic layers and in the adjacent layers for sc lattice with (001) surfaces, K2

takes the different values: K2(1) on the odd layers and K2(2) on the even ones
and the exchange parameter takes the value JS at the surfaces and J inside of the
film.

In order to treat the problem for general spin S, we need the following
Green functions Gl
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, where l ≥ 0 is integer, necessary

for dealing with higher spin values S. The equations of motion for calculation of
Gl
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, where 〈· · ·〉 = Tr(· · · e−βH)/Tre−βH denotes the thermo-

dynamic expectation value, the brackets [· · ·] denote the commutator, β = 1/kBT

and δij is the Kronecker symbol. The higher Green functions due to the exchange
interaction term are decoupled by Tyablikov–Bogolyubov (or RPA) approximation
[8]. For the terms stemming from the single-ion anisotropy we have chosen the
Anderson–Callen decoupling procedure [9] gives good results [10, 11] for the mag-
netization if the anisotropy parameter K2 is much smaller than the parameter of
the exchange coupling. Using the eigenvector method (EVM) described, for exam-
ple, in [12–14] we obtain after a two-dimensional Fourier transform to momentum
space, the L coupled equations of motion for Green’s functions G

(l)
νµ(q, ω) of layer

labeled by µ. By using the spectral theorem, for the spontaneous magnetization
per site in each atomic layer of the film with spin S we obtain
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where Φµµ = 1
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κ=1 RµνEνκδνκLκµ. R is matrix whose

columns are the right eigenvectors of matrix P L of L coupled equations of motion,
its inverse L = R−1 contains the left eigenvectors as rows, Eνκδνκ = (eβων − 1)−1

are matrix elements of a diagonal matrix L × L and ων are the eigevalues of
matrix P L. The reduction Curie temperature kBT f

C/J of the film we get, for
example for spin S = 1, from the set of L equations: kBT f

C/J = 2/3Φ̃2,
〈Sz

2 〉 = Φ̃1/Φ̃2, · · · , 〈Sz
L〉 = Φ̃1/Φ̃L where the overtilde designates a scaled quantity

in terms of 〈Sz
1 〉.

2. Results

First we consider in Fig. 1 the phase diagrams in (K2(1)/J, kBT f
C/J)

plane when K2(2)/J = 0.1 (Fig. 1A) and in (K2(2)/J, kBT f
C/J) plane when

K2(1)/J = 0.01 (Fig. 1B). In both cases we observe cross-over points at which
Curie temperature of thin film does not depend on film thickness: KC

2 (1)/J and
KC

2 (2)/J . The tricritical points (denoted by C) are marked by filled circles.
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Fig. 1. Film Curie temperature kBT f
C/J as a function: (A) of the anisotropy parameter

K2(1)/J when K2(2)/J = 0.1; (B) of anisotropy parameter K2(2)/J when K2(1)/J =

0.01 for films with with spin S = 1, with thicknesses L = 3 and 4 in the case when

∆S = JS/J = 1, D/J = 0.01. The dashed line labeled by “bulk” corresponds to the

bulk Curie temperature.

Fig. 2. Film Curie temperature kBT f
C/J : (A) as a function of parameter ∆S for films

with spin S = 1, with thicknesses L = 3 and 4 when D/J = 0.01, K2(1)/J = 0.005,

K2(2)/J = 0.01; (B) as a function of anisotropy parameter K2(1)/J for different

K2(2)/J when S = 1 for film with thickness L = 4, ∆S = 14, D/J = 0.01.

In Fig. 2A there is plotted the phase diagram in (∆S , kBT f
C/J) plane. The critical

parameter ∆C
S = JC

S /J represents other cross-over point. The cross-over points
can be observed only in the cases: anisotropic exchange couplings when the surface
exchange coupling differs from the bulk one; when the single-ion anisotropy is dif-
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ferent in the odd and in the even atomic layers of the films, etc. In Fig. 2B there
are plotted the tricritical points in the phase diagrams in the (K2(1), kBT f

C/J)
plane for different values of the single-ion anisotropy parameters K2(2)/J .
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