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We study magnetic effects in a trilayer formed of magnetic layers sepa-

rated by a spacer with a parabolic potential profile. The focus is on mecha-

nisms of indirect magnetic interactions within the spacer. We show existence

of magnetic oscillations and novel type of magnetoelectric effect.
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1. Introduction

The semimagnetic semiconductors form a variety of magnetic system with
metallic electrical properties [1]. The most promising appear the parabolic quan-
tum well (PQW) systems, which have the ability to absorb light only at the bare
harmonic-oscillator frequency irrespective of the electron–electron interaction or
the number of electrons in the well. From this reason the magnetic PQW systems
are interesting as building blocks spintronic devices. The aim of the paper is to
give analytical description of magnetic properties of the sandwich structure having
a central PQW layer. In metallic systems conventional calculation of the indirect
exchange integrals assumes uniform density and parabolic dispersion of the free
charge carriers [2, 3]. However, in the case of PQW structure the confinement
within quantum well makes invalid. Therefore, there is only limited progress in
description of magnetic interactions in the nonsquare-QW superlattices [4–7]. Due
to the doping (by the transition metal (TM) or rare-earth (RE) metal ions) the
semimagnetic semiconductors form a model diluted magnetic system with metal-
lic electrical properties. Provided that the concentration of the free carriers p

exceeds critical p > pc ≈ 3×1020 cm−3 the indirect interaction (Ruderman–Kittel–
Kasuya–Yosida, RKKY) in a semimagnetic semiconductor system dominates the
other mechanisms of magnetic interionic coupling.

2. Theory

Assuming that the “z” is the growth direction of a PQW, the Hamiltonian
that describes the electronic structure within the envelope function formalism and
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effective mass approximation is given by [1]

H = − ~
2

2m
∇2 +

Kz2

2
+ E0. (1)

Here, E0 and m represent the band gap energy and the effective mass at the center
of the PQW, respectively. K is the curvature of the parabolic potential profile,
which is assumed to be infinitely high. In view of Hamiltonian (1) the electronic
(hole) energy states within the PQW are those of the standard harmonic oscillator.
Let us focus our attention on the single band model, with the PQW electron/hole
spectrum εk,n = ~2k2/(2m) + ~ωD(n + 1/2)− µ [1], where µ is the Fermi energy.
Perturbative calculations of the RKKY exchange integral in the PQW system
which account for this spectrum give us [6]:

χ(r) ≈ χ0

rd
r2

[
Jd/2−1(x)Yd/2−1(x) + Jd/2(x)Yd/2(x)

]
, (2)

with Yν(x) being the Neumann function [6] and d = 4 is the effective spectral
dimension of the PQW system. It is worthwhile to mention here that in general
in the case of quasi-2D electron gas systems the effective spectral dimension can
take any value from the 1 ≤ d ≤ 4 range [8].

It can be easily seen that energy spectrum bears, to some extent, formal
resemblance to the picture observed in the de Haas–van Alfven (dHvA) effect, the
ladder of equidistant states superimposed onto continuous spectrum. Character-
istic feature of all systems that exhibit discrete type of spectrum are the electron
density oscillations that occur when an oscillator level crosses the Fermi energy.
In conventional dHvA effect the oscillator energy shift is generated by the variable
external magnetic field which determines the ωH. We will show that in our sys-
tem this role is played by the parameter D, where D is the PQW thickness. To
prove that let us relate the value of eigenfrequency ωD to the material constants
of the heterocomponents A and B that form the PQW. The quantum wells with
parabolic potential profile are fabricated via continuous AxB1−x variation of het-
erocomponents along the “z” direction. Let us suppose that the conduction band
edges of the heterocomponents are given by A → VA and B → VB, then the height
of the PQW potential barrier can be expressed as ∆V = VA − VB. Having that
we can determine the constant K in Eq. (1) from the condition KD2/8 = ∆V .
Consequently we can calculate the eigenfrequency ωD as ω2

D = 8∆V/(m∗D2). In
principle this expression resembles the eigenspectrum of free electrons being sub-
ject to the external magnetic field B = (2m2c2∆V )1/2/(e2m∗D2)1/2. Assuming
the canonical ensemble the thermodynamical potential Ω of the unbound (mobile)
charge carriers within the PQW can be found [9]. At T = 0 the contribution δΩ
of the electrons that have momenta within the k and k+dk (k = |k|) reads

δΩ = kdk
βm2c

πm∗D2

[
(X − n− 1/2)2 − (X − n− 1/2) + 1/6

]
, (3)

where (n+1/2) ≤ X ≤ (n+3/2) and X = A/(2πm)(m∗/∆V )1/2D, if X is outside
this region then in formula (3) n should be changed by one i.e., n → n + 1 [10].
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This means that the thermodynamical potential shows regular oscillations as the
function of PQW layer thickness D. In the case of arbitrary temperature T the
potential Ω can be estimated with the help of the Poisson formula and takes the
form [9]: Ω = Ω0 + Ω̂ , where the Ω0 is the classical part of the potential Ω which
does not oscillate as the function of D [9]. Contrary to Ω0 the Ω̂ term behaves
as [9]:

Ω̂ = Ω̂0(D) + 2
∑

k

∞∑
r=1

Ar
k cos(rfD + φr

k). (4)

The free energy of the system defined as F̂ = Ω̂ − 1/(2%)(∂Ω̂/∂µ) also
shows periodical oscillation as a function of D. Consequently if we account for
the external magnetic field H the effective magnetization within the layer can be
estimated as M = − (∂F/∂H)T , shows oscillatory behaviour as the function of
the PQW thickness. The density oscillations can be attributed to changes of the
electron density at the Fermi level when one of the hωD(n + 1/2) levels crosses
the Fermi energy. The oscillatory behaviour can be attributed to the change of
electron population at Fermi energy. There is another effect that influences the
spin polarization of the electrons confined within the PQW. Let us suppose that
the magnetizations of the adjacent uniform layers are oriented parallelly, then all
energy levels are split by the gσµBB term. Let us suppose that we change the PQW
thickness then the discrete energy levels εn,↑ and εn,↓ of the spin up and spin down
electrons, cross the Fermi level at different value of D. This produces additional
oscillatory contribution of the PQW magnetization which varies between some
Mmax and zero. In the conventional (thin) quantum wells with the rectangular
potential profiles the discrete energy levels (or centers of minibands) behave as
εk ∝ k2. Since k ∝ D−1 we have εk ∝ D−2, while in the case of our system
we have εn ∝ ωD ∝ D−1. Thus, one would expect different envelope function of
oscillations when compared to the rectangular systems.

Let us suppose that the PQW is subject to the external uniform electric
field E. The Hamiltonian H ′ of the charge carriers differs from the Hamiltonian
(1) by the term which comes from the external electric field,i.e., H ′ = H + eEz.
Formally, Hamiltonian H ′ represents the displaced harmonic oscillator

H ′ = E′
0 +

~2

2m
∇2 +

K(z ± a)2

2
. (5)

The sign in the third term in Eq. (5) depends on the direction of the applied
external field, while E′

0 = E0− e2E2/K and a = eE/K. From Eq. (5) results that
in the presence of the external electric field the shape of the quantum well remains
parabolic, however, the position of the centre of the well is shifted to the right
or left with respect to the case E = 0. Moreover, the minimum of the parabolic
potential well is shifted down (independently on the direction of E) by the value
∆E0 = (eE)2/K. Consequently the discrete oscillator levels are described by the
same frequency ωD as in the case E = 0, but all energy levels are shifted down by
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the value ∆εnk = (eE)2/K. This means that with the change of external field the
positions of the discrete levels with respect to the Fermi energy are changed by the
external electric fields. As we have shown, such change results in the oscillation of
the magnetization within the PQW. Generally, any induced magnetization under
action of external electric field is called as magnetoelectric effect. Magnetoelectric
effect is observed in many multifunctional composites [11], however, its origin is
different from that of our system.

3. Conclusions

In conclusion, we have proved that the free energy of the system (and as
result of that other characteristics) show oscillatory behaviour as the PQW thick-
ness D is changed. The most interesting effect arises when there arises external
electric field oriented along the PQW growth direction. The shift of energy levels,
being a function of the external field can modify the spin polarization of the un-
bound charge carriers within PQW. From the formal point of view this is a new
mechanism of magnetoelectric effect. In real systems this effect can be used to
manipulate from outside the properties of PQW based multilayer systems.
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